[Feature] add nlc2nchw2nlc and nchw2nlc2nchw (#1249)
* [Feature] add nlc2nchw2nlc and nchw2nlc2nchw * add example * add test, add **kwargs to make it more universalpull/1424/head
parent
4250a5aec4
commit
17b500f9df
|
@ -5,11 +5,12 @@ from .make_divisible import make_divisible
|
|||
from .res_layer import ResLayer
|
||||
from .se_layer import SELayer
|
||||
from .self_attention_block import SelfAttentionBlock
|
||||
from .shape_convert import nchw_to_nlc, nlc_to_nchw
|
||||
from .shape_convert import (nchw2nlc2nchw, nchw_to_nlc, nlc2nchw2nlc,
|
||||
nlc_to_nchw)
|
||||
from .up_conv_block import UpConvBlock
|
||||
|
||||
__all__ = [
|
||||
'ResLayer', 'SelfAttentionBlock', 'make_divisible', 'InvertedResidual',
|
||||
'UpConvBlock', 'InvertedResidualV3', 'SELayer', 'PatchEmbed',
|
||||
'nchw_to_nlc', 'nlc_to_nchw'
|
||||
'nchw_to_nlc', 'nlc_to_nchw', 'nchw2nlc2nchw', 'nlc2nchw2nlc'
|
||||
]
|
||||
|
|
|
@ -27,3 +27,81 @@ def nchw_to_nlc(x):
|
|||
"""
|
||||
assert len(x.shape) == 4
|
||||
return x.flatten(2).transpose(1, 2).contiguous()
|
||||
|
||||
|
||||
def nchw2nlc2nchw(module, x, contiguous=False, **kwargs):
|
||||
"""Flatten [N, C, H, W] shape tensor `x` to [N, L, C] shape tensor. Use the
|
||||
reshaped tensor as the input of `module`, and the convert the output of
|
||||
`module`, whose shape is.
|
||||
|
||||
[N, L, C], to [N, C, H, W].
|
||||
|
||||
Args:
|
||||
module (Callable): A callable object the takes a tensor
|
||||
with shape [N, L, C] as input.
|
||||
x (Tensor): The input tensor of shape [N, C, H, W].
|
||||
contiguous:
|
||||
contiguous (Bool): Whether to make the tensor contiguous
|
||||
after each shape transform.
|
||||
|
||||
Returns:
|
||||
Tensor: The output tensor of shape [N, C, H, W].
|
||||
|
||||
Example:
|
||||
>>> import torch
|
||||
>>> import torch.nn as nn
|
||||
>>> norm = nn.LayerNorm(4)
|
||||
>>> feature_map = torch.rand(4, 4, 5, 5)
|
||||
>>> output = nchw2nlc2nchw(norm, feature_map)
|
||||
"""
|
||||
B, C, H, W = x.shape
|
||||
if not contiguous:
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
x = module(x, **kwargs)
|
||||
x = x.transpose(1, 2).reshape(B, C, H, W)
|
||||
else:
|
||||
x = x.flatten(2).transpose(1, 2).contiguous()
|
||||
x = module(x, **kwargs)
|
||||
x = x.transpose(1, 2).reshape(B, C, H, W).contiguous()
|
||||
return x
|
||||
|
||||
|
||||
def nlc2nchw2nlc(module, x, hw_shape, contiguous=False, **kwargs):
|
||||
"""Convert [N, L, C] shape tensor `x` to [N, C, H, W] shape tensor. Use the
|
||||
reshaped tensor as the input of `module`, and convert the output of
|
||||
`module`, whose shape is.
|
||||
|
||||
[N, C, H, W], to [N, L, C].
|
||||
|
||||
Args:
|
||||
module (Callable): A callable object the takes a tensor
|
||||
with shape [N, C, H, W] as input.
|
||||
x (Tensor): The input tensor of shape [N, L, C].
|
||||
hw_shape: (Sequence[int]): The height and width of the
|
||||
feature map with shape [N, C, H, W].
|
||||
contiguous (Bool): Whether to make the tensor contiguous
|
||||
after each shape transform.
|
||||
|
||||
Returns:
|
||||
Tensor: The output tensor of shape [N, L, C].
|
||||
|
||||
Example:
|
||||
>>> import torch
|
||||
>>> import torch.nn as nn
|
||||
>>> conv = nn.Conv2d(16, 16, 3, 1, 1)
|
||||
>>> feature_map = torch.rand(4, 25, 16)
|
||||
>>> output = nlc2nchw2nlc(conv, feature_map, (5, 5))
|
||||
"""
|
||||
H, W = hw_shape
|
||||
assert len(x.shape) == 3
|
||||
B, L, C = x.shape
|
||||
assert L == H * W, 'The seq_len doesn\'t match H, W'
|
||||
if not contiguous:
|
||||
x = x.transpose(1, 2).reshape(B, C, H, W)
|
||||
x = module(x, **kwargs)
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
else:
|
||||
x = x.transpose(1, 2).reshape(B, C, H, W).contiguous()
|
||||
x = module(x, **kwargs)
|
||||
x = x.flatten(2).transpose(1, 2).contiguous()
|
||||
return x
|
||||
|
|
|
@ -0,0 +1,89 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import torch
|
||||
|
||||
from mmseg.models.utils import (nchw2nlc2nchw, nchw_to_nlc, nlc2nchw2nlc,
|
||||
nlc_to_nchw)
|
||||
|
||||
|
||||
def test_nchw2nlc2nchw():
|
||||
# Test nchw2nlc2nchw function
|
||||
shape_nchw = (4, 2, 5, 5)
|
||||
shape_nlc = (4, 25, 2)
|
||||
|
||||
def test_func(x):
|
||||
assert x.shape == torch.Size(shape_nlc)
|
||||
return x
|
||||
|
||||
x = torch.rand(*shape_nchw)
|
||||
output = nchw2nlc2nchw(test_func, x)
|
||||
assert output.shape == torch.Size(shape_nchw)
|
||||
|
||||
def test_func2(x, arg):
|
||||
assert x.shape == torch.Size(shape_nlc)
|
||||
assert arg == 100
|
||||
return x
|
||||
|
||||
x = torch.rand(*shape_nchw)
|
||||
output = nchw2nlc2nchw(test_func2, x, arg=100)
|
||||
assert output.shape == torch.Size(shape_nchw)
|
||||
|
||||
def test_func3(x):
|
||||
assert x.is_contiguous()
|
||||
assert x.shape == torch.Size(shape_nlc)
|
||||
return x
|
||||
|
||||
x = torch.rand(*shape_nchw)
|
||||
output = nchw2nlc2nchw(test_func3, x, contiguous=True)
|
||||
assert output.shape == torch.Size(shape_nchw)
|
||||
assert output.is_contiguous()
|
||||
|
||||
|
||||
def test_nlc2nchw2nlc():
|
||||
# Test nlc2nchw2nlc function
|
||||
shape_nchw = (4, 2, 5, 5)
|
||||
shape_nlc = (4, 25, 2)
|
||||
|
||||
def test_func(x):
|
||||
assert x.shape == torch.Size(shape_nchw)
|
||||
return x
|
||||
|
||||
x = torch.rand(*shape_nlc)
|
||||
output = nlc2nchw2nlc(test_func, x, shape_nchw[2:])
|
||||
assert output.shape == torch.Size(shape_nlc)
|
||||
|
||||
def test_func2(x, arg):
|
||||
assert x.shape == torch.Size(shape_nchw)
|
||||
assert arg == 100
|
||||
return x
|
||||
|
||||
x = torch.rand(*shape_nlc)
|
||||
output = nlc2nchw2nlc(test_func2, x, shape_nchw[2:], arg=100)
|
||||
assert output.shape == torch.Size(shape_nlc)
|
||||
|
||||
def test_func3(x):
|
||||
assert x.is_contiguous()
|
||||
assert x.shape == torch.Size(shape_nchw)
|
||||
return x
|
||||
|
||||
x = torch.rand(*shape_nlc)
|
||||
output = nlc2nchw2nlc(test_func3, x, shape_nchw[2:], contiguous=True)
|
||||
assert output.shape == torch.Size(shape_nlc)
|
||||
assert output.is_contiguous()
|
||||
|
||||
|
||||
def test_nchw_to_nlc():
|
||||
# Test nchw_to_nlc function
|
||||
shape_nchw = (4, 2, 5, 5)
|
||||
shape_nlc = (4, 25, 2)
|
||||
x = torch.rand(*shape_nchw)
|
||||
y = nchw_to_nlc(x)
|
||||
assert y.shape == torch.Size(shape_nlc)
|
||||
|
||||
|
||||
def test_nlc_to_nchw():
|
||||
# Test nlc_to_nchw function
|
||||
shape_nchw = (4, 2, 5, 5)
|
||||
shape_nlc = (4, 25, 2)
|
||||
x = torch.rand(*shape_nlc)
|
||||
y = nlc_to_nchw(x, (5, 5))
|
||||
assert y.shape == torch.Size(shape_nchw)
|
Loading…
Reference in New Issue