[Feature] add nlc2nchw2nlc and nchw2nlc2nchw (#1249)

* [Feature] add nlc2nchw2nlc and nchw2nlc2nchw

* add example

* add test, add **kwargs to make it more universal
pull/1424/head
Rockey 2022-03-10 20:27:28 +08:00 committed by GitHub
parent 4250a5aec4
commit 17b500f9df
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 170 additions and 2 deletions

View File

@ -5,11 +5,12 @@ from .make_divisible import make_divisible
from .res_layer import ResLayer
from .se_layer import SELayer
from .self_attention_block import SelfAttentionBlock
from .shape_convert import nchw_to_nlc, nlc_to_nchw
from .shape_convert import (nchw2nlc2nchw, nchw_to_nlc, nlc2nchw2nlc,
nlc_to_nchw)
from .up_conv_block import UpConvBlock
__all__ = [
'ResLayer', 'SelfAttentionBlock', 'make_divisible', 'InvertedResidual',
'UpConvBlock', 'InvertedResidualV3', 'SELayer', 'PatchEmbed',
'nchw_to_nlc', 'nlc_to_nchw'
'nchw_to_nlc', 'nlc_to_nchw', 'nchw2nlc2nchw', 'nlc2nchw2nlc'
]

View File

@ -27,3 +27,81 @@ def nchw_to_nlc(x):
"""
assert len(x.shape) == 4
return x.flatten(2).transpose(1, 2).contiguous()
def nchw2nlc2nchw(module, x, contiguous=False, **kwargs):
"""Flatten [N, C, H, W] shape tensor `x` to [N, L, C] shape tensor. Use the
reshaped tensor as the input of `module`, and the convert the output of
`module`, whose shape is.
[N, L, C], to [N, C, H, W].
Args:
module (Callable): A callable object the takes a tensor
with shape [N, L, C] as input.
x (Tensor): The input tensor of shape [N, C, H, W].
contiguous:
contiguous (Bool): Whether to make the tensor contiguous
after each shape transform.
Returns:
Tensor: The output tensor of shape [N, C, H, W].
Example:
>>> import torch
>>> import torch.nn as nn
>>> norm = nn.LayerNorm(4)
>>> feature_map = torch.rand(4, 4, 5, 5)
>>> output = nchw2nlc2nchw(norm, feature_map)
"""
B, C, H, W = x.shape
if not contiguous:
x = x.flatten(2).transpose(1, 2)
x = module(x, **kwargs)
x = x.transpose(1, 2).reshape(B, C, H, W)
else:
x = x.flatten(2).transpose(1, 2).contiguous()
x = module(x, **kwargs)
x = x.transpose(1, 2).reshape(B, C, H, W).contiguous()
return x
def nlc2nchw2nlc(module, x, hw_shape, contiguous=False, **kwargs):
"""Convert [N, L, C] shape tensor `x` to [N, C, H, W] shape tensor. Use the
reshaped tensor as the input of `module`, and convert the output of
`module`, whose shape is.
[N, C, H, W], to [N, L, C].
Args:
module (Callable): A callable object the takes a tensor
with shape [N, C, H, W] as input.
x (Tensor): The input tensor of shape [N, L, C].
hw_shape: (Sequence[int]): The height and width of the
feature map with shape [N, C, H, W].
contiguous (Bool): Whether to make the tensor contiguous
after each shape transform.
Returns:
Tensor: The output tensor of shape [N, L, C].
Example:
>>> import torch
>>> import torch.nn as nn
>>> conv = nn.Conv2d(16, 16, 3, 1, 1)
>>> feature_map = torch.rand(4, 25, 16)
>>> output = nlc2nchw2nlc(conv, feature_map, (5, 5))
"""
H, W = hw_shape
assert len(x.shape) == 3
B, L, C = x.shape
assert L == H * W, 'The seq_len doesn\'t match H, W'
if not contiguous:
x = x.transpose(1, 2).reshape(B, C, H, W)
x = module(x, **kwargs)
x = x.flatten(2).transpose(1, 2)
else:
x = x.transpose(1, 2).reshape(B, C, H, W).contiguous()
x = module(x, **kwargs)
x = x.flatten(2).transpose(1, 2).contiguous()
return x

View File

@ -0,0 +1,89 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmseg.models.utils import (nchw2nlc2nchw, nchw_to_nlc, nlc2nchw2nlc,
nlc_to_nchw)
def test_nchw2nlc2nchw():
# Test nchw2nlc2nchw function
shape_nchw = (4, 2, 5, 5)
shape_nlc = (4, 25, 2)
def test_func(x):
assert x.shape == torch.Size(shape_nlc)
return x
x = torch.rand(*shape_nchw)
output = nchw2nlc2nchw(test_func, x)
assert output.shape == torch.Size(shape_nchw)
def test_func2(x, arg):
assert x.shape == torch.Size(shape_nlc)
assert arg == 100
return x
x = torch.rand(*shape_nchw)
output = nchw2nlc2nchw(test_func2, x, arg=100)
assert output.shape == torch.Size(shape_nchw)
def test_func3(x):
assert x.is_contiguous()
assert x.shape == torch.Size(shape_nlc)
return x
x = torch.rand(*shape_nchw)
output = nchw2nlc2nchw(test_func3, x, contiguous=True)
assert output.shape == torch.Size(shape_nchw)
assert output.is_contiguous()
def test_nlc2nchw2nlc():
# Test nlc2nchw2nlc function
shape_nchw = (4, 2, 5, 5)
shape_nlc = (4, 25, 2)
def test_func(x):
assert x.shape == torch.Size(shape_nchw)
return x
x = torch.rand(*shape_nlc)
output = nlc2nchw2nlc(test_func, x, shape_nchw[2:])
assert output.shape == torch.Size(shape_nlc)
def test_func2(x, arg):
assert x.shape == torch.Size(shape_nchw)
assert arg == 100
return x
x = torch.rand(*shape_nlc)
output = nlc2nchw2nlc(test_func2, x, shape_nchw[2:], arg=100)
assert output.shape == torch.Size(shape_nlc)
def test_func3(x):
assert x.is_contiguous()
assert x.shape == torch.Size(shape_nchw)
return x
x = torch.rand(*shape_nlc)
output = nlc2nchw2nlc(test_func3, x, shape_nchw[2:], contiguous=True)
assert output.shape == torch.Size(shape_nlc)
assert output.is_contiguous()
def test_nchw_to_nlc():
# Test nchw_to_nlc function
shape_nchw = (4, 2, 5, 5)
shape_nlc = (4, 25, 2)
x = torch.rand(*shape_nchw)
y = nchw_to_nlc(x)
assert y.shape == torch.Size(shape_nlc)
def test_nlc_to_nchw():
# Test nlc_to_nchw function
shape_nchw = (4, 2, 5, 5)
shape_nlc = (4, 25, 2)
x = torch.rand(*shape_nlc)
y = nlc_to_nchw(x, (5, 5))
assert y.shape == torch.Size(shape_nchw)