mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
update stat to classify papers (#348)
This commit is contained in:
parent
49515e7e3c
commit
1c96a89472
@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
## Introduction
|
## Introduction
|
||||||
|
|
||||||
[ALGORITHM]
|
[OTHERS]
|
||||||
|
|
||||||
```latex
|
```latex
|
||||||
@article{micikevicius2017mixed,
|
@article{micikevicius2017mixed,
|
||||||
|
27
docs/stat.py
27
docs/stat.py
@ -1,10 +1,12 @@
|
|||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
|
import functools as func
|
||||||
import glob
|
import glob
|
||||||
import os.path as osp
|
import os.path as osp
|
||||||
import re
|
import re
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
url_prefix = 'https://github.com/open-mmlab/mmsegmentation/blob/master/'
|
url_prefix = 'https://github.com/open-mmlab/mmsegmentation/blob/master/'
|
||||||
titles_to_be_excluded = ['Mixed Precision Training']
|
|
||||||
|
|
||||||
files = sorted(glob.glob('../configs/*/README.md'))
|
files = sorted(glob.glob('../configs/*/README.md'))
|
||||||
|
|
||||||
@ -18,29 +20,40 @@ for f in files:
|
|||||||
with open(f, 'r') as content_file:
|
with open(f, 'r') as content_file:
|
||||||
content = content_file.read()
|
content = content_file.read()
|
||||||
|
|
||||||
title = content.split('\n')[0].replace('#', '')
|
title = content.split('\n')[0].replace('#', '').strip()
|
||||||
if title.strip() in titles_to_be_excluded:
|
|
||||||
continue
|
|
||||||
|
|
||||||
ckpts = set(x.lower().strip()
|
ckpts = set(x.lower().strip()
|
||||||
for x in re.findall(r'https?://download.*\.pth', content)
|
for x in re.findall(r'https?://download.*\.pth', content)
|
||||||
if 'mmsegmentation' in x)
|
if 'mmsegmentation' in x)
|
||||||
if len(ckpts) == 0:
|
if len(ckpts) == 0:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
_papertype = [x for x in re.findall(r'\[([A-Z]+)\]', content)]
|
||||||
|
assert len(_papertype) > 0
|
||||||
|
papertype = _papertype[0]
|
||||||
|
|
||||||
|
paper = set([(papertype, title)])
|
||||||
|
|
||||||
titles.append(title)
|
titles.append(title)
|
||||||
num_ckpts += len(ckpts)
|
num_ckpts += len(ckpts)
|
||||||
statsmsg = f"""
|
statsmsg = f"""
|
||||||
\t* [{title}]({url}) ({len(ckpts)} ckpts)
|
\t* [{papertype}] [{title}]({url}) ({len(ckpts)} ckpts)
|
||||||
"""
|
"""
|
||||||
stats.append((title, ckpts, statsmsg))
|
stats.append((paper, ckpts, statsmsg))
|
||||||
|
|
||||||
|
allpapers = func.reduce(lambda a, b: a.union(b), [p for p, _, _ in stats])
|
||||||
msglist = '\n'.join(x for _, _, x in stats)
|
msglist = '\n'.join(x for _, _, x in stats)
|
||||||
|
|
||||||
|
papertypes, papercounts = np.unique([t for t, _ in allpapers],
|
||||||
|
return_counts=True)
|
||||||
|
countstr = '\n'.join(
|
||||||
|
[f' - {t}: {c}' for t, c in zip(papertypes, papercounts)])
|
||||||
|
|
||||||
modelzoo = f"""
|
modelzoo = f"""
|
||||||
# Model Zoo Statistics
|
# Model Zoo Statistics
|
||||||
|
|
||||||
* Number of papers: {len(set(titles))}
|
* Number of papers: {len(set(titles))}
|
||||||
|
{countstr}
|
||||||
|
|
||||||
* Number of checkpoints: {num_ckpts}
|
* Number of checkpoints: {num_ckpts}
|
||||||
{msglist}
|
{msglist}
|
||||||
"""
|
"""
|
||||||
|
Loading…
x
Reference in New Issue
Block a user