mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
change (#1083)
This commit is contained in:
parent
40b9ebb565
commit
1cf6049758
@ -206,7 +206,7 @@ def parse_md(md_file):
|
||||
f'({crop_size[0]},{crop_size[1]})'
|
||||
}]
|
||||
if mem != -1:
|
||||
model['Metadata']['memory (GB)'] = float(mem)
|
||||
model['Metadata']['Training Memory (GB)'] = float(mem)
|
||||
# Only have semantic segmentation now
|
||||
if ms_id and els[ms_id] != '-' and els[ms_id] != '':
|
||||
model['Results'][0]['Metrics'][
|
||||
|
@ -28,7 +28,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 6.0
|
||||
Training Memory (GB): 6.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -50,7 +50,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 9.5
|
||||
Training Memory (GB): 9.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -72,7 +72,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 6.8
|
||||
Training Memory (GB): 6.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -94,7 +94,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 10.7
|
||||
Training Memory (GB): 10.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -172,7 +172,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.1
|
||||
Training Memory (GB): 9.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -194,7 +194,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 12.5
|
||||
Training Memory (GB): 12.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -244,7 +244,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.0
|
||||
Training Memory (GB): 6.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -266,7 +266,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.5
|
||||
Training Memory (GB): 9.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -27,7 +27,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 7.7
|
||||
Training Memory (GB): 7.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -49,7 +49,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 11.2
|
||||
Training Memory (GB): 11.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -71,7 +71,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 8.7
|
||||
Training Memory (GB): 8.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -93,7 +93,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 12.7
|
||||
Training Memory (GB): 12.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -171,7 +171,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 10.1
|
||||
Training Memory (GB): 10.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -193,7 +193,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 13.6
|
||||
Training Memory (GB): 13.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -27,7 +27,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (1024,1024)
|
||||
memory (GB): 5.69
|
||||
Training Memory (GB): 5.69
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -49,7 +49,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (1024,1024)
|
||||
memory (GB): 5.69
|
||||
Training Memory (GB): 5.69
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -71,7 +71,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (1024,1024)
|
||||
memory (GB): 11.17
|
||||
Training Memory (GB): 11.17
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -93,7 +93,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (1024,1024)
|
||||
memory (GB): 15.39
|
||||
Training Memory (GB): 15.39
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -115,7 +115,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (1024,1024)
|
||||
memory (GB): 15.39
|
||||
Training Memory (GB): 15.39
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -151,7 +151,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.33
|
||||
Training Memory (GB): 6.33
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: COCO-Stuff 164k
|
||||
@ -187,7 +187,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.28
|
||||
Training Memory (GB): 9.28
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: COCO-Stuff 164k
|
||||
@ -223,7 +223,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 10.36
|
||||
Training Memory (GB): 10.36
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: COCO-Stuff 164k
|
||||
|
@ -25,7 +25,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (1024,1024)
|
||||
memory (GB): 7.64
|
||||
Training Memory (GB): 7.64
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -40,7 +40,7 @@ Models:
|
||||
backbone: BiSeNetV2
|
||||
crop size: (1024,1024)
|
||||
lr schd: 160000
|
||||
memory (GB): 7.64
|
||||
Training Memory (GB): 7.64
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -55,7 +55,7 @@ Models:
|
||||
backbone: BiSeNetV2
|
||||
crop size: (1024,1024)
|
||||
lr schd: 160000
|
||||
memory (GB): 15.05
|
||||
Training Memory (GB): 15.05
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -77,7 +77,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP16
|
||||
resolution: (1024,1024)
|
||||
memory (GB): 5.77
|
||||
Training Memory (GB): 5.77
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -28,7 +28,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 6.0
|
||||
Training Memory (GB): 6.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -50,7 +50,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 9.5
|
||||
Training Memory (GB): 9.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -72,7 +72,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 6.8
|
||||
Training Memory (GB): 6.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -94,7 +94,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 10.7
|
||||
Training Memory (GB): 10.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -172,7 +172,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 8.8
|
||||
Training Memory (GB): 8.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -194,7 +194,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 12.2
|
||||
Training Memory (GB): 12.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -244,7 +244,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.0
|
||||
Training Memory (GB): 6.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -266,7 +266,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.5
|
||||
Training Memory (GB): 9.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -26,7 +26,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (680,680)
|
||||
memory (GB): 7.5
|
||||
Training Memory (GB): 7.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -48,7 +48,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 8.3
|
||||
Training Memory (GB): 8.3
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -28,7 +28,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 7.4
|
||||
Training Memory (GB): 7.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -49,7 +49,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 10.9
|
||||
Training Memory (GB): 10.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -70,7 +70,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 8.8
|
||||
Training Memory (GB): 8.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -92,7 +92,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 12.8
|
||||
Training Memory (GB): 12.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -168,7 +168,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 11.5
|
||||
Training Memory (GB): 11.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -190,7 +190,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 15.0
|
||||
Training Memory (GB): 15.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -240,7 +240,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.5
|
||||
Training Memory (GB): 6.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -262,7 +262,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.9
|
||||
Training Memory (GB): 9.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -32,7 +32,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 6.1
|
||||
Training Memory (GB): 6.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -54,7 +54,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 9.6
|
||||
Training Memory (GB): 9.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -76,7 +76,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 6.9
|
||||
Training Memory (GB): 6.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -98,7 +98,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 10.9
|
||||
Training Memory (GB): 10.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -120,7 +120,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 1.7
|
||||
Training Memory (GB): 1.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -170,7 +170,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP16
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.75
|
||||
Training Memory (GB): 5.75
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -191,7 +191,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 1.9
|
||||
Training Memory (GB): 1.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -255,7 +255,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 1.6
|
||||
Training Memory (GB): 1.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -277,7 +277,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 6.0
|
||||
Training Memory (GB): 6.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -299,7 +299,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 9.5
|
||||
Training Memory (GB): 9.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -321,7 +321,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 1.8
|
||||
Training Memory (GB): 1.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -343,7 +343,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 6.8
|
||||
Training Memory (GB): 6.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -365,7 +365,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 10.7
|
||||
Training Memory (GB): 10.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -387,7 +387,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 8.9
|
||||
Training Memory (GB): 8.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -409,7 +409,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 12.4
|
||||
Training Memory (GB): 12.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -459,7 +459,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.1
|
||||
Training Memory (GB): 6.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -481,7 +481,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.6
|
||||
Training Memory (GB): 9.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -531,7 +531,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (480,480)
|
||||
memory (GB): 9.2
|
||||
Training Memory (GB): 9.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
@ -595,7 +595,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.6
|
||||
Training Memory (GB): 9.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: COCO-Stuff 10k
|
||||
@ -617,7 +617,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 13.2
|
||||
Training Memory (GB): 13.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: COCO-Stuff 10k
|
||||
@ -667,7 +667,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.6
|
||||
Training Memory (GB): 9.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: COCO-Stuff 164k
|
||||
@ -689,7 +689,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 13.2
|
||||
Training Memory (GB): 13.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: COCO-Stuff 164k
|
||||
|
@ -31,7 +31,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 7.5
|
||||
Training Memory (GB): 7.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -53,7 +53,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 11.0
|
||||
Training Memory (GB): 11.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -75,7 +75,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 8.5
|
||||
Training Memory (GB): 8.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -97,7 +97,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 12.5
|
||||
Training Memory (GB): 12.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -119,7 +119,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 2.2
|
||||
Training Memory (GB): 2.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -169,7 +169,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP16
|
||||
resolution: (512,1024)
|
||||
memory (GB): 6.35
|
||||
Training Memory (GB): 6.35
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -190,7 +190,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 2.5
|
||||
Training Memory (GB): 2.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -240,7 +240,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.8
|
||||
Training Memory (GB): 5.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -255,7 +255,7 @@ Models:
|
||||
backbone: R-101-D16-MG124
|
||||
crop size: (512,1024)
|
||||
lr schd: 80000
|
||||
memory (GB): 9.9
|
||||
Training Memory (GB): 9.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -277,7 +277,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 2.1
|
||||
Training Memory (GB): 2.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -299,7 +299,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 7.4
|
||||
Training Memory (GB): 7.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -321,7 +321,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 10.9
|
||||
Training Memory (GB): 10.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -343,7 +343,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 2.4
|
||||
Training Memory (GB): 2.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -365,7 +365,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 8.4
|
||||
Training Memory (GB): 8.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -387,7 +387,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 12.3
|
||||
Training Memory (GB): 12.3
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -409,7 +409,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 10.6
|
||||
Training Memory (GB): 10.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -431,7 +431,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 14.1
|
||||
Training Memory (GB): 14.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -481,7 +481,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 7.6
|
||||
Training Memory (GB): 7.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -503,7 +503,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 11.0
|
||||
Training Memory (GB): 11.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -616,7 +616,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 1.93
|
||||
Training Memory (GB): 1.93
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: LoveDA
|
||||
@ -638,7 +638,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 7.37
|
||||
Training Memory (GB): 7.37
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: LoveDA
|
||||
@ -660,7 +660,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 10.84
|
||||
Training Memory (GB): 10.84
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: LoveDA
|
||||
|
@ -27,7 +27,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 7.0
|
||||
Training Memory (GB): 7.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -49,7 +49,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 10.6
|
||||
Training Memory (GB): 10.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -71,7 +71,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 7.9
|
||||
Training Memory (GB): 7.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -93,7 +93,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 12.0
|
||||
Training Memory (GB): 12.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -171,7 +171,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.4
|
||||
Training Memory (GB): 9.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -193,7 +193,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 13.0
|
||||
Training Memory (GB): 13.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -27,7 +27,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 7.3
|
||||
Training Memory (GB): 7.3
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -48,7 +48,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 10.9
|
||||
Training Memory (GB): 10.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -69,7 +69,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 9.2
|
||||
Training Memory (GB): 9.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -91,7 +91,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 12.6
|
||||
Training Memory (GB): 12.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -167,7 +167,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 8.8
|
||||
Training Memory (GB): 8.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -189,7 +189,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 12.8
|
||||
Training Memory (GB): 12.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -26,7 +26,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 8.09
|
||||
Training Memory (GB): 8.09
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -26,7 +26,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.4
|
||||
Training Memory (GB): 5.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -48,7 +48,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 6.2
|
||||
Training Memory (GB): 6.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -70,7 +70,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 8.9
|
||||
Training Memory (GB): 8.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -92,7 +92,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 10.1
|
||||
Training Memory (GB): 10.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -27,7 +27,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 8.6
|
||||
Training Memory (GB): 8.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -49,7 +49,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 12.1
|
||||
Training Memory (GB): 12.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -71,7 +71,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 9.8
|
||||
Training Memory (GB): 9.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -93,7 +93,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 13.7
|
||||
Training Memory (GB): 13.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -171,7 +171,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 10.1
|
||||
Training Memory (GB): 10.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -193,7 +193,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 13.6
|
||||
Training Memory (GB): 13.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -27,7 +27,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.67
|
||||
Training Memory (GB): 5.67
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -42,7 +42,7 @@ Models:
|
||||
backbone: R-50-D32
|
||||
crop size: (512,1024)
|
||||
lr schd: 80000
|
||||
memory (GB): 9.79
|
||||
Training Memory (GB): 9.79
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -64,7 +64,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.67
|
||||
Training Memory (GB): 5.67
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -79,7 +79,7 @@ Models:
|
||||
backbone: R-50-D32
|
||||
crop size: (512,1024)
|
||||
lr schd: 80000
|
||||
memory (GB): 9.94
|
||||
Training Memory (GB): 9.94
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -101,7 +101,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 8.15
|
||||
Training Memory (GB): 8.15
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -116,7 +116,7 @@ Models:
|
||||
backbone: R-50-D32
|
||||
crop size: (512,1024)
|
||||
lr schd: 80000
|
||||
memory (GB): 15.45
|
||||
Training Memory (GB): 15.45
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -138,7 +138,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 8.46
|
||||
Training Memory (GB): 8.46
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -174,7 +174,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 8.02
|
||||
Training Memory (GB): 8.02
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -210,7 +210,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 9.67
|
||||
Training Memory (GB): 9.67
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -24,7 +24,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 3.3
|
||||
Training Memory (GB): 3.3
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -30,7 +30,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.7
|
||||
Training Memory (GB): 5.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -52,7 +52,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 9.2
|
||||
Training Memory (GB): 9.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -74,7 +74,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 6.5
|
||||
Training Memory (GB): 6.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -96,7 +96,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 10.4
|
||||
Training Memory (GB): 10.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -118,7 +118,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 1.7
|
||||
Training Memory (GB): 1.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -168,7 +168,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP16
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.37
|
||||
Training Memory (GB): 5.37
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -189,7 +189,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 1.9
|
||||
Training Memory (GB): 1.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -239,7 +239,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 1.6
|
||||
Training Memory (GB): 1.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -261,7 +261,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.6
|
||||
Training Memory (GB): 5.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -283,7 +283,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 9.1
|
||||
Training Memory (GB): 9.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -305,7 +305,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 1.7
|
||||
Training Memory (GB): 1.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -327,7 +327,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 6.3
|
||||
Training Memory (GB): 6.3
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -349,7 +349,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 10.3
|
||||
Training Memory (GB): 10.3
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -371,7 +371,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 3.4
|
||||
Training Memory (GB): 3.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -414,7 +414,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 3.7
|
||||
Training Memory (GB): 3.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -457,7 +457,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 4.5
|
||||
Training Memory (GB): 4.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -500,7 +500,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 5.0
|
||||
Training Memory (GB): 5.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -543,7 +543,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 3.2
|
||||
Training Memory (GB): 3.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -565,7 +565,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 3.6
|
||||
Training Memory (GB): 3.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -587,7 +587,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 4.3
|
||||
Training Memory (GB): 4.3
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -609,7 +609,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 4.8
|
||||
Training Memory (GB): 4.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -631,7 +631,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 8.5
|
||||
Training Memory (GB): 8.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -653,7 +653,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 12.0
|
||||
Training Memory (GB): 12.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -703,7 +703,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 5.7
|
||||
Training Memory (GB): 5.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -725,7 +725,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.2
|
||||
Training Memory (GB): 9.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -28,7 +28,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.8
|
||||
Training Memory (GB): 5.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -50,7 +50,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 9.2
|
||||
Training Memory (GB): 9.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -72,7 +72,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 6.5
|
||||
Training Memory (GB): 6.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -94,7 +94,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 10.5
|
||||
Training Memory (GB): 10.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -172,7 +172,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 8.5
|
||||
Training Memory (GB): 8.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -194,7 +194,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 12.0
|
||||
Training Memory (GB): 12.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -244,7 +244,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 5.8
|
||||
Training Memory (GB): 5.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -266,7 +266,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.2
|
||||
Training Memory (GB): 9.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -31,7 +31,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 1.7
|
||||
Training Memory (GB): 1.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -53,7 +53,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 2.9
|
||||
Training Memory (GB): 2.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -75,7 +75,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 6.2
|
||||
Training Memory (GB): 6.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -181,7 +181,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 3.8
|
||||
Training Memory (GB): 3.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -203,7 +203,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 4.9
|
||||
Training Memory (GB): 4.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -225,7 +225,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 8.2
|
||||
Training Memory (GB): 8.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -289,7 +289,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 1.8
|
||||
Training Memory (GB): 1.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -311,7 +311,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 2.9
|
||||
Training Memory (GB): 2.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -333,7 +333,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.2
|
||||
Training Memory (GB): 6.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -397,7 +397,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (480,480)
|
||||
memory (GB): 6.1
|
||||
Training Memory (GB): 6.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
@ -461,7 +461,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 1.72
|
||||
Training Memory (GB): 1.72
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: LoveDA
|
||||
@ -483,7 +483,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 2.9
|
||||
Training Memory (GB): 2.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: LoveDA
|
||||
@ -505,7 +505,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.25
|
||||
Training Memory (GB): 6.25
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: LoveDA
|
||||
|
@ -26,7 +26,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (832,832)
|
||||
memory (GB): 1.7
|
||||
Training Memory (GB): 1.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -90,7 +90,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (832,832)
|
||||
memory (GB): 2.53
|
||||
Training Memory (GB): 2.53
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -154,7 +154,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (832,832)
|
||||
memory (GB): 3.08
|
||||
Training Memory (GB): 3.08
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -28,7 +28,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.869
|
||||
Training Memory (GB): 5.869
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -50,7 +50,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.869
|
||||
Training Memory (GB): 5.869
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -72,7 +72,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 6.759
|
||||
Training Memory (GB): 6.759
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -94,7 +94,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 6.759
|
||||
Training Memory (GB): 6.759
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -116,7 +116,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 9.425
|
||||
Training Memory (GB): 9.425
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -138,7 +138,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 9.425
|
||||
Training Memory (GB): 9.425
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -160,7 +160,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 10.815
|
||||
Training Memory (GB): 10.815
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -182,7 +182,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 10.815
|
||||
Training Memory (GB): 10.815
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -204,7 +204,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.0
|
||||
Training Memory (GB): 9.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -226,7 +226,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.0
|
||||
Training Memory (GB): 9.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -248,7 +248,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 12.562
|
||||
Training Memory (GB): 12.562
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -270,7 +270,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 12.562
|
||||
Training Memory (GB): 12.562
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -292,7 +292,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 5.9
|
||||
Training Memory (GB): 5.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -314,7 +314,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 5.9
|
||||
Training Memory (GB): 5.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -336,7 +336,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.465
|
||||
Training Memory (GB): 9.465
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -358,7 +358,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.465
|
||||
Training Memory (GB): 9.465
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -27,7 +27,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 3.4
|
||||
Training Memory (GB): 3.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -48,7 +48,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 3.6
|
||||
Training Memory (GB): 3.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -69,7 +69,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 3.9
|
||||
Training Memory (GB): 3.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -90,7 +90,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.1
|
||||
Training Memory (GB): 5.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -111,7 +111,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.5
|
||||
Training Memory (GB): 6.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20k
|
||||
@ -132,7 +132,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.5
|
||||
Training Memory (GB): 6.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20k
|
||||
@ -153,7 +153,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.8
|
||||
Training Memory (GB): 6.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20k
|
||||
@ -174,7 +174,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 8.2
|
||||
Training Memory (GB): 8.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20k
|
||||
|
@ -26,7 +26,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 8.9
|
||||
Training Memory (GB): 8.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -48,7 +48,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 8.9
|
||||
Training Memory (GB): 8.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -70,7 +70,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.3
|
||||
Training Memory (GB): 5.3
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -92,7 +92,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.3
|
||||
Training Memory (GB): 5.3
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -28,7 +28,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 7.4
|
||||
Training Memory (GB): 7.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -49,7 +49,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 10.9
|
||||
Training Memory (GB): 10.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -70,7 +70,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 8.9
|
||||
Training Memory (GB): 8.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -92,7 +92,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 12.8
|
||||
Training Memory (GB): 12.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -168,7 +168,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.1
|
||||
Training Memory (GB): 9.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -190,7 +190,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 12.6
|
||||
Training Memory (GB): 12.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -240,7 +240,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.4
|
||||
Training Memory (GB): 6.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -262,7 +262,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.8
|
||||
Training Memory (GB): 9.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -28,7 +28,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 3.5
|
||||
Training Memory (GB): 3.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -50,7 +50,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 4.7
|
||||
Training Memory (GB): 4.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -72,7 +72,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 8.0
|
||||
Training Memory (GB): 8.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -191,7 +191,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 8.8
|
||||
Training Memory (GB): 8.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -212,7 +212,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 8.8
|
||||
Training Memory (GB): 8.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -233,7 +233,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.7
|
||||
Training Memory (GB): 6.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -255,7 +255,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 7.9
|
||||
Training Memory (GB): 7.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -277,7 +277,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 11.2
|
||||
Training Memory (GB): 11.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -341,7 +341,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 3.5
|
||||
Training Memory (GB): 3.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -363,7 +363,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 4.7
|
||||
Training Memory (GB): 4.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -385,7 +385,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 8.1
|
||||
Training Memory (GB): 8.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -27,7 +27,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 3.1
|
||||
Training Memory (GB): 3.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -49,7 +49,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 4.2
|
||||
Training Memory (GB): 4.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -71,7 +71,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 5.1
|
||||
Training Memory (GB): 5.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -93,7 +93,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.1
|
||||
Training Memory (GB): 6.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -28,7 +28,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 7.0
|
||||
Training Memory (GB): 7.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -50,7 +50,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 10.5
|
||||
Training Memory (GB): 10.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -72,7 +72,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 7.9
|
||||
Training Memory (GB): 7.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -94,7 +94,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 11.9
|
||||
Training Memory (GB): 11.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -172,7 +172,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.0
|
||||
Training Memory (GB): 9.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -194,7 +194,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 12.5
|
||||
Training Memory (GB): 12.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -244,7 +244,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.9
|
||||
Training Memory (GB): 6.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -266,7 +266,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 10.4
|
||||
Training Memory (GB): 10.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -34,7 +34,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 6.1
|
||||
Training Memory (GB): 6.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -56,7 +56,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 9.6
|
||||
Training Memory (GB): 9.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -78,7 +78,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 6.9
|
||||
Training Memory (GB): 6.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -100,7 +100,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 10.9
|
||||
Training Memory (GB): 10.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -122,7 +122,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 1.7
|
||||
Training Memory (GB): 1.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -172,7 +172,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP16
|
||||
resolution: (512,1024)
|
||||
memory (GB): 5.34
|
||||
Training Memory (GB): 5.34
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -193,7 +193,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 1.9
|
||||
Training Memory (GB): 1.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -243,7 +243,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 1.5
|
||||
Training Memory (GB): 1.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -265,7 +265,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 6.0
|
||||
Training Memory (GB): 6.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -287,7 +287,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 9.5
|
||||
Training Memory (GB): 9.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -309,7 +309,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 1.7
|
||||
Training Memory (GB): 1.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -331,7 +331,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 6.8
|
||||
Training Memory (GB): 6.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -353,7 +353,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 10.8
|
||||
Training Memory (GB): 10.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -375,7 +375,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 8.5
|
||||
Training Memory (GB): 8.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -397,7 +397,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 12.0
|
||||
Training Memory (GB): 12.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -447,7 +447,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.1
|
||||
Training Memory (GB): 6.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -469,7 +469,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.6
|
||||
Training Memory (GB): 9.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -519,7 +519,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (480,480)
|
||||
memory (GB): 8.8
|
||||
Training Memory (GB): 8.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
@ -583,7 +583,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.6
|
||||
Training Memory (GB): 9.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: COCO-Stuff 10k
|
||||
@ -605,7 +605,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 13.2
|
||||
Training Memory (GB): 13.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: COCO-Stuff 10k
|
||||
@ -655,7 +655,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.6
|
||||
Training Memory (GB): 9.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: COCO-Stuff 164k
|
||||
@ -677,7 +677,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 13.2
|
||||
Training Memory (GB): 13.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: COCO-Stuff 164k
|
||||
@ -755,7 +755,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 1.45
|
||||
Training Memory (GB): 1.45
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: LoveDA
|
||||
@ -777,7 +777,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.14
|
||||
Training Memory (GB): 6.14
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: LoveDA
|
||||
@ -799,7 +799,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.61
|
||||
Training Memory (GB): 9.61
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: LoveDA
|
||||
|
@ -27,7 +27,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 11.4
|
||||
Training Memory (GB): 11.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -49,7 +49,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 11.8
|
||||
Training Memory (GB): 11.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -71,7 +71,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 11.9
|
||||
Training Memory (GB): 11.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -93,7 +93,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 13.2
|
||||
Training Memory (GB): 13.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -115,7 +115,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 14.2
|
||||
Training Memory (GB): 14.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20k
|
||||
@ -137,7 +137,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 14.2
|
||||
Training Memory (GB): 14.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20k
|
||||
@ -159,7 +159,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 14.6
|
||||
Training Memory (GB): 14.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20k
|
||||
@ -181,7 +181,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 16.2
|
||||
Training Memory (GB): 16.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20k
|
||||
|
@ -26,7 +26,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 2.1
|
||||
Training Memory (GB): 2.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20k
|
||||
@ -48,7 +48,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 2.6
|
||||
Training Memory (GB): 2.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20k
|
||||
@ -70,7 +70,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 3.6
|
||||
Training Memory (GB): 3.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20k
|
||||
@ -92,7 +92,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 4.8
|
||||
Training Memory (GB): 4.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20k
|
||||
@ -114,7 +114,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.1
|
||||
Training Memory (GB): 6.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20k
|
||||
@ -136,7 +136,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 7.2
|
||||
Training Memory (GB): 7.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20k
|
||||
@ -158,7 +158,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (640,640)
|
||||
memory (GB): 11.5
|
||||
Training Memory (GB): 11.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20k
|
||||
|
@ -27,7 +27,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 2.8
|
||||
Training Memory (GB): 2.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -49,7 +49,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 3.9
|
||||
Training Memory (GB): 3.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -71,7 +71,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 4.9
|
||||
Training Memory (GB): 4.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -93,7 +93,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 5.9
|
||||
Training Memory (GB): 5.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -27,7 +27,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 18.4
|
||||
Training Memory (GB): 18.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -49,7 +49,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 19.54
|
||||
Training Memory (GB): 19.54
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -64,7 +64,7 @@ Models:
|
||||
backbone: ViT-L
|
||||
crop size: (512,512)
|
||||
lr schd: 160000
|
||||
memory (GB): 10.96
|
||||
Training Memory (GB): 10.96
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -86,7 +86,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 17.3
|
||||
Training Memory (GB): 17.3
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -26,7 +26,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 5.02
|
||||
Training Memory (GB): 5.02
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -48,7 +48,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.17
|
||||
Training Memory (GB): 6.17
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -70,7 +70,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 7.61
|
||||
Training Memory (GB): 7.61
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -106,7 +106,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 8.52
|
||||
Training Memory (GB): 8.52
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -22,7 +22,7 @@ Models:
|
||||
backbone: UNet-S5-D16
|
||||
crop size: (64,64)
|
||||
lr schd: 40000
|
||||
memory (GB): 0.68
|
||||
Training Memory (GB): 0.68
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: DRIVE
|
||||
@ -36,7 +36,7 @@ Models:
|
||||
backbone: UNet-S5-D16
|
||||
crop size: (64,64)
|
||||
lr schd: 40000
|
||||
memory (GB): 0.599
|
||||
Training Memory (GB): 0.599
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: DRIVE
|
||||
@ -50,7 +50,7 @@ Models:
|
||||
backbone: UNet-S5-D16
|
||||
crop size: (64,64)
|
||||
lr schd: 40000
|
||||
memory (GB): 0.596
|
||||
Training Memory (GB): 0.596
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: DRIVE
|
||||
@ -64,7 +64,7 @@ Models:
|
||||
backbone: UNet-S5-D16
|
||||
crop size: (128,128)
|
||||
lr schd: 40000
|
||||
memory (GB): 0.968
|
||||
Training Memory (GB): 0.968
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: STARE
|
||||
@ -78,7 +78,7 @@ Models:
|
||||
backbone: UNet-S5-D16
|
||||
crop size: (128,128)
|
||||
lr schd: 40000
|
||||
memory (GB): 0.982
|
||||
Training Memory (GB): 0.982
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: STARE
|
||||
@ -92,7 +92,7 @@ Models:
|
||||
backbone: UNet-S5-D16
|
||||
crop size: (128,128)
|
||||
lr schd: 40000
|
||||
memory (GB): 0.999
|
||||
Training Memory (GB): 0.999
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: STARE
|
||||
@ -106,7 +106,7 @@ Models:
|
||||
backbone: UNet-S5-D16
|
||||
crop size: (128,128)
|
||||
lr schd: 40000
|
||||
memory (GB): 0.968
|
||||
Training Memory (GB): 0.968
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: CHASE_DB1
|
||||
@ -120,7 +120,7 @@ Models:
|
||||
backbone: UNet-S5-D16
|
||||
crop size: (128,128)
|
||||
lr schd: 40000
|
||||
memory (GB): 0.982
|
||||
Training Memory (GB): 0.982
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: CHASE_DB1
|
||||
@ -134,7 +134,7 @@ Models:
|
||||
backbone: UNet-S5-D16
|
||||
crop size: (128,128)
|
||||
lr schd: 40000
|
||||
memory (GB): 0.999
|
||||
Training Memory (GB): 0.999
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: CHASE_DB1
|
||||
@ -148,7 +148,7 @@ Models:
|
||||
backbone: UNet-S5-D16
|
||||
crop size: (256,256)
|
||||
lr schd: 40000
|
||||
memory (GB): 2.525
|
||||
Training Memory (GB): 2.525
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: HRF
|
||||
@ -162,7 +162,7 @@ Models:
|
||||
backbone: UNet-S5-D16
|
||||
crop size: (256,256)
|
||||
lr schd: 40000
|
||||
memory (GB): 2.588
|
||||
Training Memory (GB): 2.588
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: HRF
|
||||
@ -176,7 +176,7 @@ Models:
|
||||
backbone: UNet-S5-D16
|
||||
crop size: (256,256)
|
||||
lr schd: 40000
|
||||
memory (GB): 2.604
|
||||
Training Memory (GB): 2.604
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: HRF
|
||||
|
@ -28,7 +28,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 6.4
|
||||
Training Memory (GB): 6.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -50,7 +50,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 7.4
|
||||
Training Memory (GB): 7.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -72,7 +72,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 7.2
|
||||
Training Memory (GB): 7.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -94,7 +94,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (769,769)
|
||||
memory (GB): 8.4
|
||||
Training Memory (GB): 8.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
@ -172,7 +172,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 8.1
|
||||
Training Memory (GB): 8.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -194,7 +194,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.1
|
||||
Training Memory (GB): 9.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -244,7 +244,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 6.4
|
||||
Training Memory (GB): 6.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
@ -266,7 +266,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 7.5
|
||||
Training Memory (GB): 7.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -26,7 +26,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.2
|
||||
Training Memory (GB): 9.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -48,7 +48,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.2
|
||||
Training Memory (GB): 9.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -70,7 +70,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.21
|
||||
Training Memory (GB): 9.21
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -92,7 +92,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 4.68
|
||||
Training Memory (GB): 4.68
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -114,7 +114,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 4.68
|
||||
Training Memory (GB): 4.68
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -136,7 +136,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 5.69
|
||||
Training Memory (GB): 5.69
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -158,7 +158,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 5.69
|
||||
Training Memory (GB): 5.69
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -180,7 +180,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 7.75
|
||||
Training Memory (GB): 7.75
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -202,7 +202,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 7.75
|
||||
Training Memory (GB): 7.75
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -224,7 +224,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.21
|
||||
Training Memory (GB): 9.21
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
@ -246,7 +246,7 @@ Models:
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
memory (GB): 9.21
|
||||
Training Memory (GB): 9.21
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
Loading…
x
Reference in New Issue
Block a user