diff --git a/.dev/md2yml.py b/.dev/md2yml.py index 311f6d072..4f7b876b8 100755 --- a/.dev/md2yml.py +++ b/.dev/md2yml.py @@ -206,7 +206,7 @@ def parse_md(md_file): f'({crop_size[0]},{crop_size[1]})' }] if mem != -1: - model['Metadata']['memory (GB)'] = float(mem) + model['Metadata']['Training Memory (GB)'] = float(mem) # Only have semantic segmentation now if ms_id and els[ms_id] != '-' and els[ms_id] != '': model['Results'][0]['Metrics'][ diff --git a/configs/ann/ann.yml b/configs/ann/ann.yml index b819c223c..9f4140733 100644 --- a/configs/ann/ann.yml +++ b/configs/ann/ann.yml @@ -28,7 +28,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 6.0 + Training Memory (GB): 6.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -50,7 +50,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 9.5 + Training Memory (GB): 9.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -72,7 +72,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 6.8 + Training Memory (GB): 6.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -94,7 +94,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 10.7 + Training Memory (GB): 10.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -172,7 +172,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.1 + Training Memory (GB): 9.1 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -194,7 +194,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 12.5 + Training Memory (GB): 12.5 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -244,7 +244,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.0 + Training Memory (GB): 6.0 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -266,7 +266,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.5 + Training Memory (GB): 9.5 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/apcnet/apcnet.yml b/configs/apcnet/apcnet.yml index 32bcfc3bf..2f84aadf6 100644 --- a/configs/apcnet/apcnet.yml +++ b/configs/apcnet/apcnet.yml @@ -27,7 +27,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 7.7 + Training Memory (GB): 7.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -49,7 +49,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 11.2 + Training Memory (GB): 11.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -71,7 +71,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 8.7 + Training Memory (GB): 8.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -93,7 +93,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 12.7 + Training Memory (GB): 12.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -171,7 +171,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 10.1 + Training Memory (GB): 10.1 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -193,7 +193,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 13.6 + Training Memory (GB): 13.6 Results: - Task: Semantic Segmentation Dataset: ADE20K diff --git a/configs/bisenetv1/bisenetv1.yml b/configs/bisenetv1/bisenetv1.yml index 26a7c6004..acde4ffa9 100644 --- a/configs/bisenetv1/bisenetv1.yml +++ b/configs/bisenetv1/bisenetv1.yml @@ -27,7 +27,7 @@ Models: batch size: 1 mode: FP32 resolution: (1024,1024) - memory (GB): 5.69 + Training Memory (GB): 5.69 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -49,7 +49,7 @@ Models: batch size: 1 mode: FP32 resolution: (1024,1024) - memory (GB): 5.69 + Training Memory (GB): 5.69 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -71,7 +71,7 @@ Models: batch size: 1 mode: FP32 resolution: (1024,1024) - memory (GB): 11.17 + Training Memory (GB): 11.17 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -93,7 +93,7 @@ Models: batch size: 1 mode: FP32 resolution: (1024,1024) - memory (GB): 15.39 + Training Memory (GB): 15.39 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -115,7 +115,7 @@ Models: batch size: 1 mode: FP32 resolution: (1024,1024) - memory (GB): 15.39 + Training Memory (GB): 15.39 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -151,7 +151,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.33 + Training Memory (GB): 6.33 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 164k @@ -187,7 +187,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.28 + Training Memory (GB): 9.28 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 164k @@ -223,7 +223,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 10.36 + Training Memory (GB): 10.36 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 164k diff --git a/configs/bisenetv2/bisenetv2.yml b/configs/bisenetv2/bisenetv2.yml index d9e11be67..82bab7e67 100644 --- a/configs/bisenetv2/bisenetv2.yml +++ b/configs/bisenetv2/bisenetv2.yml @@ -25,7 +25,7 @@ Models: batch size: 1 mode: FP32 resolution: (1024,1024) - memory (GB): 7.64 + Training Memory (GB): 7.64 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -40,7 +40,7 @@ Models: backbone: BiSeNetV2 crop size: (1024,1024) lr schd: 160000 - memory (GB): 7.64 + Training Memory (GB): 7.64 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -55,7 +55,7 @@ Models: backbone: BiSeNetV2 crop size: (1024,1024) lr schd: 160000 - memory (GB): 15.05 + Training Memory (GB): 15.05 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -77,7 +77,7 @@ Models: batch size: 1 mode: FP16 resolution: (1024,1024) - memory (GB): 5.77 + Training Memory (GB): 5.77 Results: - Task: Semantic Segmentation Dataset: Cityscapes diff --git a/configs/ccnet/ccnet.yml b/configs/ccnet/ccnet.yml index d8303ba72..5e5d955ed 100644 --- a/configs/ccnet/ccnet.yml +++ b/configs/ccnet/ccnet.yml @@ -28,7 +28,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 6.0 + Training Memory (GB): 6.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -50,7 +50,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 9.5 + Training Memory (GB): 9.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -72,7 +72,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 6.8 + Training Memory (GB): 6.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -94,7 +94,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 10.7 + Training Memory (GB): 10.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -172,7 +172,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 8.8 + Training Memory (GB): 8.8 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -194,7 +194,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 12.2 + Training Memory (GB): 12.2 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -244,7 +244,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.0 + Training Memory (GB): 6.0 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -266,7 +266,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.5 + Training Memory (GB): 9.5 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/cgnet/cgnet.yml b/configs/cgnet/cgnet.yml index d3169e925..ebb3760dd 100644 --- a/configs/cgnet/cgnet.yml +++ b/configs/cgnet/cgnet.yml @@ -26,7 +26,7 @@ Models: batch size: 1 mode: FP32 resolution: (680,680) - memory (GB): 7.5 + Training Memory (GB): 7.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -48,7 +48,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 8.3 + Training Memory (GB): 8.3 Results: - Task: Semantic Segmentation Dataset: Cityscapes diff --git a/configs/danet/danet.yml b/configs/danet/danet.yml index 33bec9411..ac5393946 100644 --- a/configs/danet/danet.yml +++ b/configs/danet/danet.yml @@ -28,7 +28,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 7.4 + Training Memory (GB): 7.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -49,7 +49,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 10.9 + Training Memory (GB): 10.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -70,7 +70,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 8.8 + Training Memory (GB): 8.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -92,7 +92,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 12.8 + Training Memory (GB): 12.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -168,7 +168,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 11.5 + Training Memory (GB): 11.5 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -190,7 +190,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 15.0 + Training Memory (GB): 15.0 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -240,7 +240,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.5 + Training Memory (GB): 6.5 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -262,7 +262,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.9 + Training Memory (GB): 9.9 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/deeplabv3/deeplabv3.yml b/configs/deeplabv3/deeplabv3.yml index cd5c8d0cd..e8bdfa6e3 100644 --- a/configs/deeplabv3/deeplabv3.yml +++ b/configs/deeplabv3/deeplabv3.yml @@ -32,7 +32,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 6.1 + Training Memory (GB): 6.1 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -54,7 +54,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 9.6 + Training Memory (GB): 9.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -76,7 +76,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 6.9 + Training Memory (GB): 6.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -98,7 +98,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 10.9 + Training Memory (GB): 10.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -120,7 +120,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 1.7 + Training Memory (GB): 1.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -170,7 +170,7 @@ Models: batch size: 1 mode: FP16 resolution: (512,1024) - memory (GB): 5.75 + Training Memory (GB): 5.75 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -191,7 +191,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 1.9 + Training Memory (GB): 1.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -255,7 +255,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 1.6 + Training Memory (GB): 1.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -277,7 +277,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 6.0 + Training Memory (GB): 6.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -299,7 +299,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 9.5 + Training Memory (GB): 9.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -321,7 +321,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 1.8 + Training Memory (GB): 1.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -343,7 +343,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 6.8 + Training Memory (GB): 6.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -365,7 +365,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 10.7 + Training Memory (GB): 10.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -387,7 +387,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 8.9 + Training Memory (GB): 8.9 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -409,7 +409,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 12.4 + Training Memory (GB): 12.4 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -459,7 +459,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.1 + Training Memory (GB): 6.1 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -481,7 +481,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.6 + Training Memory (GB): 9.6 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -531,7 +531,7 @@ Models: batch size: 1 mode: FP32 resolution: (480,480) - memory (GB): 9.2 + Training Memory (GB): 9.2 Results: - Task: Semantic Segmentation Dataset: Pascal Context @@ -595,7 +595,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.6 + Training Memory (GB): 9.6 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 10k @@ -617,7 +617,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 13.2 + Training Memory (GB): 13.2 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 10k @@ -667,7 +667,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.6 + Training Memory (GB): 9.6 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 164k @@ -689,7 +689,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 13.2 + Training Memory (GB): 13.2 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 164k diff --git a/configs/deeplabv3plus/deeplabv3plus.yml b/configs/deeplabv3plus/deeplabv3plus.yml index 637b8134e..43e7a3c14 100644 --- a/configs/deeplabv3plus/deeplabv3plus.yml +++ b/configs/deeplabv3plus/deeplabv3plus.yml @@ -31,7 +31,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 7.5 + Training Memory (GB): 7.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -53,7 +53,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 11.0 + Training Memory (GB): 11.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -75,7 +75,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 8.5 + Training Memory (GB): 8.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -97,7 +97,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 12.5 + Training Memory (GB): 12.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -119,7 +119,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 2.2 + Training Memory (GB): 2.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -169,7 +169,7 @@ Models: batch size: 1 mode: FP16 resolution: (512,1024) - memory (GB): 6.35 + Training Memory (GB): 6.35 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -190,7 +190,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 2.5 + Training Memory (GB): 2.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -240,7 +240,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 5.8 + Training Memory (GB): 5.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -255,7 +255,7 @@ Models: backbone: R-101-D16-MG124 crop size: (512,1024) lr schd: 80000 - memory (GB): 9.9 + Training Memory (GB): 9.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -277,7 +277,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 2.1 + Training Memory (GB): 2.1 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -299,7 +299,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 7.4 + Training Memory (GB): 7.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -321,7 +321,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 10.9 + Training Memory (GB): 10.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -343,7 +343,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 2.4 + Training Memory (GB): 2.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -365,7 +365,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 8.4 + Training Memory (GB): 8.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -387,7 +387,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 12.3 + Training Memory (GB): 12.3 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -409,7 +409,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 10.6 + Training Memory (GB): 10.6 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -431,7 +431,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 14.1 + Training Memory (GB): 14.1 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -481,7 +481,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 7.6 + Training Memory (GB): 7.6 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -503,7 +503,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 11.0 + Training Memory (GB): 11.0 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -616,7 +616,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 1.93 + Training Memory (GB): 1.93 Results: - Task: Semantic Segmentation Dataset: LoveDA @@ -638,7 +638,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 7.37 + Training Memory (GB): 7.37 Results: - Task: Semantic Segmentation Dataset: LoveDA @@ -660,7 +660,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 10.84 + Training Memory (GB): 10.84 Results: - Task: Semantic Segmentation Dataset: LoveDA diff --git a/configs/dmnet/dmnet.yml b/configs/dmnet/dmnet.yml index f45a65931..a224033e5 100644 --- a/configs/dmnet/dmnet.yml +++ b/configs/dmnet/dmnet.yml @@ -27,7 +27,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 7.0 + Training Memory (GB): 7.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -49,7 +49,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 10.6 + Training Memory (GB): 10.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -71,7 +71,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 7.9 + Training Memory (GB): 7.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -93,7 +93,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 12.0 + Training Memory (GB): 12.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -171,7 +171,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.4 + Training Memory (GB): 9.4 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -193,7 +193,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 13.0 + Training Memory (GB): 13.0 Results: - Task: Semantic Segmentation Dataset: ADE20K diff --git a/configs/dnlnet/dnlnet.yml b/configs/dnlnet/dnlnet.yml index 79dee30e6..81e9fcaf3 100644 --- a/configs/dnlnet/dnlnet.yml +++ b/configs/dnlnet/dnlnet.yml @@ -27,7 +27,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 7.3 + Training Memory (GB): 7.3 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -48,7 +48,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 10.9 + Training Memory (GB): 10.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -69,7 +69,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 9.2 + Training Memory (GB): 9.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -91,7 +91,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 12.6 + Training Memory (GB): 12.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -167,7 +167,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 8.8 + Training Memory (GB): 8.8 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -189,7 +189,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 12.8 + Training Memory (GB): 12.8 Results: - Task: Semantic Segmentation Dataset: ADE20K diff --git a/configs/dpt/dpt.yml b/configs/dpt/dpt.yml index 9e59b356a..f1cf9427a 100644 --- a/configs/dpt/dpt.yml +++ b/configs/dpt/dpt.yml @@ -26,7 +26,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 8.09 + Training Memory (GB): 8.09 Results: - Task: Semantic Segmentation Dataset: ADE20K diff --git a/configs/emanet/emanet.yml b/configs/emanet/emanet.yml index 55ea80cc0..173baa0ef 100644 --- a/configs/emanet/emanet.yml +++ b/configs/emanet/emanet.yml @@ -26,7 +26,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 5.4 + Training Memory (GB): 5.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -48,7 +48,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 6.2 + Training Memory (GB): 6.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -70,7 +70,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 8.9 + Training Memory (GB): 8.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -92,7 +92,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 10.1 + Training Memory (GB): 10.1 Results: - Task: Semantic Segmentation Dataset: Cityscapes diff --git a/configs/encnet/encnet.yml b/configs/encnet/encnet.yml index 24e0ab184..4876222f9 100644 --- a/configs/encnet/encnet.yml +++ b/configs/encnet/encnet.yml @@ -27,7 +27,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 8.6 + Training Memory (GB): 8.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -49,7 +49,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 12.1 + Training Memory (GB): 12.1 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -71,7 +71,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 9.8 + Training Memory (GB): 9.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -93,7 +93,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 13.7 + Training Memory (GB): 13.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -171,7 +171,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 10.1 + Training Memory (GB): 10.1 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -193,7 +193,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 13.6 + Training Memory (GB): 13.6 Results: - Task: Semantic Segmentation Dataset: ADE20K diff --git a/configs/fastfcn/fastfcn.yml b/configs/fastfcn/fastfcn.yml index da6e11141..30aa72df4 100644 --- a/configs/fastfcn/fastfcn.yml +++ b/configs/fastfcn/fastfcn.yml @@ -27,7 +27,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 5.67 + Training Memory (GB): 5.67 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -42,7 +42,7 @@ Models: backbone: R-50-D32 crop size: (512,1024) lr schd: 80000 - memory (GB): 9.79 + Training Memory (GB): 9.79 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -64,7 +64,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 5.67 + Training Memory (GB): 5.67 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -79,7 +79,7 @@ Models: backbone: R-50-D32 crop size: (512,1024) lr schd: 80000 - memory (GB): 9.94 + Training Memory (GB): 9.94 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -101,7 +101,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 8.15 + Training Memory (GB): 8.15 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -116,7 +116,7 @@ Models: backbone: R-50-D32 crop size: (512,1024) lr schd: 80000 - memory (GB): 15.45 + Training Memory (GB): 15.45 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -138,7 +138,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 8.46 + Training Memory (GB): 8.46 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -174,7 +174,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 8.02 + Training Memory (GB): 8.02 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -210,7 +210,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 9.67 + Training Memory (GB): 9.67 Results: - Task: Semantic Segmentation Dataset: ADE20K diff --git a/configs/fastscnn/fastscnn.yml b/configs/fastscnn/fastscnn.yml index 287c6c8c4..d4a3e9ac5 100644 --- a/configs/fastscnn/fastscnn.yml +++ b/configs/fastscnn/fastscnn.yml @@ -24,7 +24,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 3.3 + Training Memory (GB): 3.3 Results: - Task: Semantic Segmentation Dataset: Cityscapes diff --git a/configs/fcn/fcn.yml b/configs/fcn/fcn.yml index fa6e576d4..276b9f5c6 100644 --- a/configs/fcn/fcn.yml +++ b/configs/fcn/fcn.yml @@ -30,7 +30,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 5.7 + Training Memory (GB): 5.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -52,7 +52,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 9.2 + Training Memory (GB): 9.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -74,7 +74,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 6.5 + Training Memory (GB): 6.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -96,7 +96,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 10.4 + Training Memory (GB): 10.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -118,7 +118,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 1.7 + Training Memory (GB): 1.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -168,7 +168,7 @@ Models: batch size: 1 mode: FP16 resolution: (512,1024) - memory (GB): 5.37 + Training Memory (GB): 5.37 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -189,7 +189,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 1.9 + Training Memory (GB): 1.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -239,7 +239,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 1.6 + Training Memory (GB): 1.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -261,7 +261,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 5.6 + Training Memory (GB): 5.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -283,7 +283,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 9.1 + Training Memory (GB): 9.1 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -305,7 +305,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 1.7 + Training Memory (GB): 1.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -327,7 +327,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 6.3 + Training Memory (GB): 6.3 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -349,7 +349,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 10.3 + Training Memory (GB): 10.3 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -371,7 +371,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 3.4 + Training Memory (GB): 3.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -414,7 +414,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 3.7 + Training Memory (GB): 3.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -457,7 +457,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 4.5 + Training Memory (GB): 4.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -500,7 +500,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 5.0 + Training Memory (GB): 5.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -543,7 +543,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 3.2 + Training Memory (GB): 3.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -565,7 +565,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 3.6 + Training Memory (GB): 3.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -587,7 +587,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 4.3 + Training Memory (GB): 4.3 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -609,7 +609,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 4.8 + Training Memory (GB): 4.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -631,7 +631,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 8.5 + Training Memory (GB): 8.5 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -653,7 +653,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 12.0 + Training Memory (GB): 12.0 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -703,7 +703,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 5.7 + Training Memory (GB): 5.7 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -725,7 +725,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.2 + Training Memory (GB): 9.2 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/gcnet/gcnet.yml b/configs/gcnet/gcnet.yml index 3bdd4ad04..c13849fc6 100644 --- a/configs/gcnet/gcnet.yml +++ b/configs/gcnet/gcnet.yml @@ -28,7 +28,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 5.8 + Training Memory (GB): 5.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -50,7 +50,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 9.2 + Training Memory (GB): 9.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -72,7 +72,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 6.5 + Training Memory (GB): 6.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -94,7 +94,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 10.5 + Training Memory (GB): 10.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -172,7 +172,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 8.5 + Training Memory (GB): 8.5 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -194,7 +194,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 12.0 + Training Memory (GB): 12.0 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -244,7 +244,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 5.8 + Training Memory (GB): 5.8 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -266,7 +266,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.2 + Training Memory (GB): 9.2 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/hrnet/hrnet.yml b/configs/hrnet/hrnet.yml index 01eec76cd..404abc013 100644 --- a/configs/hrnet/hrnet.yml +++ b/configs/hrnet/hrnet.yml @@ -31,7 +31,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 1.7 + Training Memory (GB): 1.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -53,7 +53,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 2.9 + Training Memory (GB): 2.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -75,7 +75,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 6.2 + Training Memory (GB): 6.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -181,7 +181,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 3.8 + Training Memory (GB): 3.8 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -203,7 +203,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 4.9 + Training Memory (GB): 4.9 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -225,7 +225,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 8.2 + Training Memory (GB): 8.2 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -289,7 +289,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 1.8 + Training Memory (GB): 1.8 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -311,7 +311,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 2.9 + Training Memory (GB): 2.9 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -333,7 +333,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.2 + Training Memory (GB): 6.2 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -397,7 +397,7 @@ Models: batch size: 1 mode: FP32 resolution: (480,480) - memory (GB): 6.1 + Training Memory (GB): 6.1 Results: - Task: Semantic Segmentation Dataset: Pascal Context @@ -461,7 +461,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 1.72 + Training Memory (GB): 1.72 Results: - Task: Semantic Segmentation Dataset: LoveDA @@ -483,7 +483,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 2.9 + Training Memory (GB): 2.9 Results: - Task: Semantic Segmentation Dataset: LoveDA @@ -505,7 +505,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.25 + Training Memory (GB): 6.25 Results: - Task: Semantic Segmentation Dataset: LoveDA diff --git a/configs/icnet/icnet.yml b/configs/icnet/icnet.yml index 9d50e9119..eb8852ce3 100644 --- a/configs/icnet/icnet.yml +++ b/configs/icnet/icnet.yml @@ -26,7 +26,7 @@ Models: batch size: 1 mode: FP32 resolution: (832,832) - memory (GB): 1.7 + Training Memory (GB): 1.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -90,7 +90,7 @@ Models: batch size: 1 mode: FP32 resolution: (832,832) - memory (GB): 2.53 + Training Memory (GB): 2.53 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -154,7 +154,7 @@ Models: batch size: 1 mode: FP32 resolution: (832,832) - memory (GB): 3.08 + Training Memory (GB): 3.08 Results: - Task: Semantic Segmentation Dataset: Cityscapes diff --git a/configs/isanet/isanet.yml b/configs/isanet/isanet.yml index 113e4f151..212ce8c7a 100644 --- a/configs/isanet/isanet.yml +++ b/configs/isanet/isanet.yml @@ -28,7 +28,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 5.869 + Training Memory (GB): 5.869 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -50,7 +50,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 5.869 + Training Memory (GB): 5.869 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -72,7 +72,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 6.759 + Training Memory (GB): 6.759 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -94,7 +94,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 6.759 + Training Memory (GB): 6.759 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -116,7 +116,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 9.425 + Training Memory (GB): 9.425 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -138,7 +138,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 9.425 + Training Memory (GB): 9.425 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -160,7 +160,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 10.815 + Training Memory (GB): 10.815 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -182,7 +182,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 10.815 + Training Memory (GB): 10.815 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -204,7 +204,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.0 + Training Memory (GB): 9.0 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -226,7 +226,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.0 + Training Memory (GB): 9.0 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -248,7 +248,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 12.562 + Training Memory (GB): 12.562 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -270,7 +270,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 12.562 + Training Memory (GB): 12.562 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -292,7 +292,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 5.9 + Training Memory (GB): 5.9 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -314,7 +314,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 5.9 + Training Memory (GB): 5.9 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -336,7 +336,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.465 + Training Memory (GB): 9.465 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -358,7 +358,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.465 + Training Memory (GB): 9.465 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/mobilenet_v2/mobilenet_v2.yml b/configs/mobilenet_v2/mobilenet_v2.yml index b8aa46ff6..57e0fe23f 100644 --- a/configs/mobilenet_v2/mobilenet_v2.yml +++ b/configs/mobilenet_v2/mobilenet_v2.yml @@ -27,7 +27,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 3.4 + Training Memory (GB): 3.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -48,7 +48,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 3.6 + Training Memory (GB): 3.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -69,7 +69,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 3.9 + Training Memory (GB): 3.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -90,7 +90,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 5.1 + Training Memory (GB): 5.1 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -111,7 +111,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.5 + Training Memory (GB): 6.5 Results: - Task: Semantic Segmentation Dataset: ADE20k @@ -132,7 +132,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.5 + Training Memory (GB): 6.5 Results: - Task: Semantic Segmentation Dataset: ADE20k @@ -153,7 +153,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.8 + Training Memory (GB): 6.8 Results: - Task: Semantic Segmentation Dataset: ADE20k @@ -174,7 +174,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 8.2 + Training Memory (GB): 8.2 Results: - Task: Semantic Segmentation Dataset: ADE20k diff --git a/configs/mobilenet_v3/mobilenet_v3.yml b/configs/mobilenet_v3/mobilenet_v3.yml index b04740833..04c3eaf4f 100644 --- a/configs/mobilenet_v3/mobilenet_v3.yml +++ b/configs/mobilenet_v3/mobilenet_v3.yml @@ -26,7 +26,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 8.9 + Training Memory (GB): 8.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -48,7 +48,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 8.9 + Training Memory (GB): 8.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -70,7 +70,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 5.3 + Training Memory (GB): 5.3 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -92,7 +92,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 5.3 + Training Memory (GB): 5.3 Results: - Task: Semantic Segmentation Dataset: Cityscapes diff --git a/configs/nonlocal_net/nonlocal_net.yml b/configs/nonlocal_net/nonlocal_net.yml index 74022940b..812287307 100644 --- a/configs/nonlocal_net/nonlocal_net.yml +++ b/configs/nonlocal_net/nonlocal_net.yml @@ -28,7 +28,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 7.4 + Training Memory (GB): 7.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -49,7 +49,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 10.9 + Training Memory (GB): 10.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -70,7 +70,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 8.9 + Training Memory (GB): 8.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -92,7 +92,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 12.8 + Training Memory (GB): 12.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -168,7 +168,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.1 + Training Memory (GB): 9.1 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -190,7 +190,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 12.6 + Training Memory (GB): 12.6 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -240,7 +240,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.4 + Training Memory (GB): 6.4 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -262,7 +262,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.8 + Training Memory (GB): 9.8 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/ocrnet/ocrnet.yml b/configs/ocrnet/ocrnet.yml index 635580cb5..90f1793a5 100644 --- a/configs/ocrnet/ocrnet.yml +++ b/configs/ocrnet/ocrnet.yml @@ -28,7 +28,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 3.5 + Training Memory (GB): 3.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -50,7 +50,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 4.7 + Training Memory (GB): 4.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -72,7 +72,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 8.0 + Training Memory (GB): 8.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -191,7 +191,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 8.8 + Training Memory (GB): 8.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -212,7 +212,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 8.8 + Training Memory (GB): 8.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -233,7 +233,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.7 + Training Memory (GB): 6.7 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -255,7 +255,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 7.9 + Training Memory (GB): 7.9 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -277,7 +277,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 11.2 + Training Memory (GB): 11.2 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -341,7 +341,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 3.5 + Training Memory (GB): 3.5 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -363,7 +363,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 4.7 + Training Memory (GB): 4.7 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -385,7 +385,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 8.1 + Training Memory (GB): 8.1 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/point_rend/point_rend.yml b/configs/point_rend/point_rend.yml index 835bbdb32..d3de2d2c0 100644 --- a/configs/point_rend/point_rend.yml +++ b/configs/point_rend/point_rend.yml @@ -27,7 +27,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 3.1 + Training Memory (GB): 3.1 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -49,7 +49,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 4.2 + Training Memory (GB): 4.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -71,7 +71,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 5.1 + Training Memory (GB): 5.1 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -93,7 +93,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.1 + Training Memory (GB): 6.1 Results: - Task: Semantic Segmentation Dataset: ADE20K diff --git a/configs/psanet/psanet.yml b/configs/psanet/psanet.yml index a263b3f7c..b64bb04b3 100644 --- a/configs/psanet/psanet.yml +++ b/configs/psanet/psanet.yml @@ -28,7 +28,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 7.0 + Training Memory (GB): 7.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -50,7 +50,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 10.5 + Training Memory (GB): 10.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -72,7 +72,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 7.9 + Training Memory (GB): 7.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -94,7 +94,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 11.9 + Training Memory (GB): 11.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -172,7 +172,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.0 + Training Memory (GB): 9.0 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -194,7 +194,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 12.5 + Training Memory (GB): 12.5 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -244,7 +244,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.9 + Training Memory (GB): 6.9 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -266,7 +266,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 10.4 + Training Memory (GB): 10.4 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/pspnet/pspnet.yml b/configs/pspnet/pspnet.yml index 2b6834c20..b5de88c14 100644 --- a/configs/pspnet/pspnet.yml +++ b/configs/pspnet/pspnet.yml @@ -34,7 +34,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 6.1 + Training Memory (GB): 6.1 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -56,7 +56,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 9.6 + Training Memory (GB): 9.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -78,7 +78,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 6.9 + Training Memory (GB): 6.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -100,7 +100,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 10.9 + Training Memory (GB): 10.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -122,7 +122,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 1.7 + Training Memory (GB): 1.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -172,7 +172,7 @@ Models: batch size: 1 mode: FP16 resolution: (512,1024) - memory (GB): 5.34 + Training Memory (GB): 5.34 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -193,7 +193,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 1.9 + Training Memory (GB): 1.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -243,7 +243,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 1.5 + Training Memory (GB): 1.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -265,7 +265,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 6.0 + Training Memory (GB): 6.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -287,7 +287,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 9.5 + Training Memory (GB): 9.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -309,7 +309,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 1.7 + Training Memory (GB): 1.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -331,7 +331,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 6.8 + Training Memory (GB): 6.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -353,7 +353,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 10.8 + Training Memory (GB): 10.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -375,7 +375,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 8.5 + Training Memory (GB): 8.5 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -397,7 +397,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 12.0 + Training Memory (GB): 12.0 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -447,7 +447,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.1 + Training Memory (GB): 6.1 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -469,7 +469,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.6 + Training Memory (GB): 9.6 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -519,7 +519,7 @@ Models: batch size: 1 mode: FP32 resolution: (480,480) - memory (GB): 8.8 + Training Memory (GB): 8.8 Results: - Task: Semantic Segmentation Dataset: Pascal Context @@ -583,7 +583,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.6 + Training Memory (GB): 9.6 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 10k @@ -605,7 +605,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 13.2 + Training Memory (GB): 13.2 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 10k @@ -655,7 +655,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.6 + Training Memory (GB): 9.6 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 164k @@ -677,7 +677,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 13.2 + Training Memory (GB): 13.2 Results: - Task: Semantic Segmentation Dataset: COCO-Stuff 164k @@ -755,7 +755,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 1.45 + Training Memory (GB): 1.45 Results: - Task: Semantic Segmentation Dataset: LoveDA @@ -777,7 +777,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.14 + Training Memory (GB): 6.14 Results: - Task: Semantic Segmentation Dataset: LoveDA @@ -799,7 +799,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.61 + Training Memory (GB): 9.61 Results: - Task: Semantic Segmentation Dataset: LoveDA diff --git a/configs/resnest/resnest.yml b/configs/resnest/resnest.yml index 624929a13..6a4fc5a45 100644 --- a/configs/resnest/resnest.yml +++ b/configs/resnest/resnest.yml @@ -27,7 +27,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 11.4 + Training Memory (GB): 11.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -49,7 +49,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 11.8 + Training Memory (GB): 11.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -71,7 +71,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 11.9 + Training Memory (GB): 11.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -93,7 +93,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 13.2 + Training Memory (GB): 13.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -115,7 +115,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 14.2 + Training Memory (GB): 14.2 Results: - Task: Semantic Segmentation Dataset: ADE20k @@ -137,7 +137,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 14.2 + Training Memory (GB): 14.2 Results: - Task: Semantic Segmentation Dataset: ADE20k @@ -159,7 +159,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 14.6 + Training Memory (GB): 14.6 Results: - Task: Semantic Segmentation Dataset: ADE20k @@ -181,7 +181,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 16.2 + Training Memory (GB): 16.2 Results: - Task: Semantic Segmentation Dataset: ADE20k diff --git a/configs/segformer/segformer.yml b/configs/segformer/segformer.yml index e6e514a63..d60db0065 100644 --- a/configs/segformer/segformer.yml +++ b/configs/segformer/segformer.yml @@ -26,7 +26,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 2.1 + Training Memory (GB): 2.1 Results: - Task: Semantic Segmentation Dataset: ADE20k @@ -48,7 +48,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 2.6 + Training Memory (GB): 2.6 Results: - Task: Semantic Segmentation Dataset: ADE20k @@ -70,7 +70,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 3.6 + Training Memory (GB): 3.6 Results: - Task: Semantic Segmentation Dataset: ADE20k @@ -92,7 +92,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 4.8 + Training Memory (GB): 4.8 Results: - Task: Semantic Segmentation Dataset: ADE20k @@ -114,7 +114,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.1 + Training Memory (GB): 6.1 Results: - Task: Semantic Segmentation Dataset: ADE20k @@ -136,7 +136,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 7.2 + Training Memory (GB): 7.2 Results: - Task: Semantic Segmentation Dataset: ADE20k @@ -158,7 +158,7 @@ Models: batch size: 1 mode: FP32 resolution: (640,640) - memory (GB): 11.5 + Training Memory (GB): 11.5 Results: - Task: Semantic Segmentation Dataset: ADE20k diff --git a/configs/sem_fpn/sem_fpn.yml b/configs/sem_fpn/sem_fpn.yml index f00b22993..b9895034c 100644 --- a/configs/sem_fpn/sem_fpn.yml +++ b/configs/sem_fpn/sem_fpn.yml @@ -27,7 +27,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 2.8 + Training Memory (GB): 2.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -49,7 +49,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 3.9 + Training Memory (GB): 3.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -71,7 +71,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 4.9 + Training Memory (GB): 4.9 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -93,7 +93,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 5.9 + Training Memory (GB): 5.9 Results: - Task: Semantic Segmentation Dataset: ADE20K diff --git a/configs/setr/setr.yml b/configs/setr/setr.yml index e60104d44..ca142362b 100644 --- a/configs/setr/setr.yml +++ b/configs/setr/setr.yml @@ -27,7 +27,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 18.4 + Training Memory (GB): 18.4 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -49,7 +49,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 19.54 + Training Memory (GB): 19.54 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -64,7 +64,7 @@ Models: backbone: ViT-L crop size: (512,512) lr schd: 160000 - memory (GB): 10.96 + Training Memory (GB): 10.96 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -86,7 +86,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 17.3 + Training Memory (GB): 17.3 Results: - Task: Semantic Segmentation Dataset: ADE20K diff --git a/configs/swin/swin.yml b/configs/swin/swin.yml index 5534f0311..cf4260894 100644 --- a/configs/swin/swin.yml +++ b/configs/swin/swin.yml @@ -26,7 +26,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 5.02 + Training Memory (GB): 5.02 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -48,7 +48,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.17 + Training Memory (GB): 6.17 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -70,7 +70,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 7.61 + Training Memory (GB): 7.61 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -106,7 +106,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 8.52 + Training Memory (GB): 8.52 Results: - Task: Semantic Segmentation Dataset: ADE20K diff --git a/configs/unet/unet.yml b/configs/unet/unet.yml index 0fc77325d..be81163dc 100644 --- a/configs/unet/unet.yml +++ b/configs/unet/unet.yml @@ -22,7 +22,7 @@ Models: backbone: UNet-S5-D16 crop size: (64,64) lr schd: 40000 - memory (GB): 0.68 + Training Memory (GB): 0.68 Results: - Task: Semantic Segmentation Dataset: DRIVE @@ -36,7 +36,7 @@ Models: backbone: UNet-S5-D16 crop size: (64,64) lr schd: 40000 - memory (GB): 0.599 + Training Memory (GB): 0.599 Results: - Task: Semantic Segmentation Dataset: DRIVE @@ -50,7 +50,7 @@ Models: backbone: UNet-S5-D16 crop size: (64,64) lr schd: 40000 - memory (GB): 0.596 + Training Memory (GB): 0.596 Results: - Task: Semantic Segmentation Dataset: DRIVE @@ -64,7 +64,7 @@ Models: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 - memory (GB): 0.968 + Training Memory (GB): 0.968 Results: - Task: Semantic Segmentation Dataset: STARE @@ -78,7 +78,7 @@ Models: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 - memory (GB): 0.982 + Training Memory (GB): 0.982 Results: - Task: Semantic Segmentation Dataset: STARE @@ -92,7 +92,7 @@ Models: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 - memory (GB): 0.999 + Training Memory (GB): 0.999 Results: - Task: Semantic Segmentation Dataset: STARE @@ -106,7 +106,7 @@ Models: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 - memory (GB): 0.968 + Training Memory (GB): 0.968 Results: - Task: Semantic Segmentation Dataset: CHASE_DB1 @@ -120,7 +120,7 @@ Models: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 - memory (GB): 0.982 + Training Memory (GB): 0.982 Results: - Task: Semantic Segmentation Dataset: CHASE_DB1 @@ -134,7 +134,7 @@ Models: backbone: UNet-S5-D16 crop size: (128,128) lr schd: 40000 - memory (GB): 0.999 + Training Memory (GB): 0.999 Results: - Task: Semantic Segmentation Dataset: CHASE_DB1 @@ -148,7 +148,7 @@ Models: backbone: UNet-S5-D16 crop size: (256,256) lr schd: 40000 - memory (GB): 2.525 + Training Memory (GB): 2.525 Results: - Task: Semantic Segmentation Dataset: HRF @@ -162,7 +162,7 @@ Models: backbone: UNet-S5-D16 crop size: (256,256) lr schd: 40000 - memory (GB): 2.588 + Training Memory (GB): 2.588 Results: - Task: Semantic Segmentation Dataset: HRF @@ -176,7 +176,7 @@ Models: backbone: UNet-S5-D16 crop size: (256,256) lr schd: 40000 - memory (GB): 2.604 + Training Memory (GB): 2.604 Results: - Task: Semantic Segmentation Dataset: HRF diff --git a/configs/upernet/upernet.yml b/configs/upernet/upernet.yml index a5a5c85ee..a9237439e 100644 --- a/configs/upernet/upernet.yml +++ b/configs/upernet/upernet.yml @@ -28,7 +28,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 6.4 + Training Memory (GB): 6.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -50,7 +50,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,1024) - memory (GB): 7.4 + Training Memory (GB): 7.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -72,7 +72,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 7.2 + Training Memory (GB): 7.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -94,7 +94,7 @@ Models: batch size: 1 mode: FP32 resolution: (769,769) - memory (GB): 8.4 + Training Memory (GB): 8.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes @@ -172,7 +172,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 8.1 + Training Memory (GB): 8.1 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -194,7 +194,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.1 + Training Memory (GB): 9.1 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -244,7 +244,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 6.4 + Training Memory (GB): 6.4 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug @@ -266,7 +266,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 7.5 + Training Memory (GB): 7.5 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug diff --git a/configs/vit/vit.yml b/configs/vit/vit.yml index 5692a64bd..9d6449b0a 100644 --- a/configs/vit/vit.yml +++ b/configs/vit/vit.yml @@ -26,7 +26,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.2 + Training Memory (GB): 9.2 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -48,7 +48,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.2 + Training Memory (GB): 9.2 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -70,7 +70,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.21 + Training Memory (GB): 9.21 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -92,7 +92,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 4.68 + Training Memory (GB): 4.68 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -114,7 +114,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 4.68 + Training Memory (GB): 4.68 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -136,7 +136,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 5.69 + Training Memory (GB): 5.69 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -158,7 +158,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 5.69 + Training Memory (GB): 5.69 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -180,7 +180,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 7.75 + Training Memory (GB): 7.75 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -202,7 +202,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 7.75 + Training Memory (GB): 7.75 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -224,7 +224,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.21 + Training Memory (GB): 9.21 Results: - Task: Semantic Segmentation Dataset: ADE20K @@ -246,7 +246,7 @@ Models: batch size: 1 mode: FP32 resolution: (512,512) - memory (GB): 9.21 + Training Memory (GB): 9.21 Results: - Task: Semantic Segmentation Dataset: ADE20K