This commit is contained in:
MengzhangLI 2021-11-30 20:54:25 +08:00 committed by GitHub
parent 40b9ebb565
commit 1cf6049758
37 changed files with 313 additions and 313 deletions

View File

@ -206,7 +206,7 @@ def parse_md(md_file):
f'({crop_size[0]},{crop_size[1]})' f'({crop_size[0]},{crop_size[1]})'
}] }]
if mem != -1: if mem != -1:
model['Metadata']['memory (GB)'] = float(mem) model['Metadata']['Training Memory (GB)'] = float(mem)
# Only have semantic segmentation now # Only have semantic segmentation now
if ms_id and els[ms_id] != '-' and els[ms_id] != '': if ms_id and els[ms_id] != '-' and els[ms_id] != '':
model['Results'][0]['Metrics'][ model['Results'][0]['Metrics'][

View File

@ -28,7 +28,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 6.0 Training Memory (GB): 6.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -50,7 +50,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 9.5 Training Memory (GB): 9.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -72,7 +72,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 6.8 Training Memory (GB): 6.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -94,7 +94,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 10.7 Training Memory (GB): 10.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -172,7 +172,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.1 Training Memory (GB): 9.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -194,7 +194,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 12.5 Training Memory (GB): 12.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -244,7 +244,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.0 Training Memory (GB): 6.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -266,7 +266,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.5 Training Memory (GB): 9.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug

View File

@ -27,7 +27,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 7.7 Training Memory (GB): 7.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -49,7 +49,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 11.2 Training Memory (GB): 11.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -71,7 +71,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 8.7 Training Memory (GB): 8.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -93,7 +93,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 12.7 Training Memory (GB): 12.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -171,7 +171,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 10.1 Training Memory (GB): 10.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -193,7 +193,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 13.6 Training Memory (GB): 13.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K

View File

@ -27,7 +27,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (1024,1024) resolution: (1024,1024)
memory (GB): 5.69 Training Memory (GB): 5.69
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -49,7 +49,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (1024,1024) resolution: (1024,1024)
memory (GB): 5.69 Training Memory (GB): 5.69
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -71,7 +71,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (1024,1024) resolution: (1024,1024)
memory (GB): 11.17 Training Memory (GB): 11.17
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -93,7 +93,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (1024,1024) resolution: (1024,1024)
memory (GB): 15.39 Training Memory (GB): 15.39
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -115,7 +115,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (1024,1024) resolution: (1024,1024)
memory (GB): 15.39 Training Memory (GB): 15.39
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -151,7 +151,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.33 Training Memory (GB): 6.33
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: COCO-Stuff 164k Dataset: COCO-Stuff 164k
@ -187,7 +187,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.28 Training Memory (GB): 9.28
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: COCO-Stuff 164k Dataset: COCO-Stuff 164k
@ -223,7 +223,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 10.36 Training Memory (GB): 10.36
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: COCO-Stuff 164k Dataset: COCO-Stuff 164k

View File

@ -25,7 +25,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (1024,1024) resolution: (1024,1024)
memory (GB): 7.64 Training Memory (GB): 7.64
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -40,7 +40,7 @@ Models:
backbone: BiSeNetV2 backbone: BiSeNetV2
crop size: (1024,1024) crop size: (1024,1024)
lr schd: 160000 lr schd: 160000
memory (GB): 7.64 Training Memory (GB): 7.64
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -55,7 +55,7 @@ Models:
backbone: BiSeNetV2 backbone: BiSeNetV2
crop size: (1024,1024) crop size: (1024,1024)
lr schd: 160000 lr schd: 160000
memory (GB): 15.05 Training Memory (GB): 15.05
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -77,7 +77,7 @@ Models:
batch size: 1 batch size: 1
mode: FP16 mode: FP16
resolution: (1024,1024) resolution: (1024,1024)
memory (GB): 5.77 Training Memory (GB): 5.77
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes

View File

@ -28,7 +28,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 6.0 Training Memory (GB): 6.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -50,7 +50,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 9.5 Training Memory (GB): 9.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -72,7 +72,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 6.8 Training Memory (GB): 6.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -94,7 +94,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 10.7 Training Memory (GB): 10.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -172,7 +172,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 8.8 Training Memory (GB): 8.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -194,7 +194,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 12.2 Training Memory (GB): 12.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -244,7 +244,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.0 Training Memory (GB): 6.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -266,7 +266,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.5 Training Memory (GB): 9.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug

View File

@ -26,7 +26,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (680,680) resolution: (680,680)
memory (GB): 7.5 Training Memory (GB): 7.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -48,7 +48,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 8.3 Training Memory (GB): 8.3
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes

View File

@ -28,7 +28,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 7.4 Training Memory (GB): 7.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -49,7 +49,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 10.9 Training Memory (GB): 10.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -70,7 +70,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 8.8 Training Memory (GB): 8.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -92,7 +92,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 12.8 Training Memory (GB): 12.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -168,7 +168,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 11.5 Training Memory (GB): 11.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -190,7 +190,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 15.0 Training Memory (GB): 15.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -240,7 +240,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.5 Training Memory (GB): 6.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -262,7 +262,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.9 Training Memory (GB): 9.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug

View File

@ -32,7 +32,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 6.1 Training Memory (GB): 6.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -54,7 +54,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 9.6 Training Memory (GB): 9.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -76,7 +76,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 6.9 Training Memory (GB): 6.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -98,7 +98,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 10.9 Training Memory (GB): 10.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -120,7 +120,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 1.7 Training Memory (GB): 1.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -170,7 +170,7 @@ Models:
batch size: 1 batch size: 1
mode: FP16 mode: FP16
resolution: (512,1024) resolution: (512,1024)
memory (GB): 5.75 Training Memory (GB): 5.75
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -191,7 +191,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 1.9 Training Memory (GB): 1.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -255,7 +255,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 1.6 Training Memory (GB): 1.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -277,7 +277,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 6.0 Training Memory (GB): 6.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -299,7 +299,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 9.5 Training Memory (GB): 9.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -321,7 +321,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 1.8 Training Memory (GB): 1.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -343,7 +343,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 6.8 Training Memory (GB): 6.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -365,7 +365,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 10.7 Training Memory (GB): 10.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -387,7 +387,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 8.9 Training Memory (GB): 8.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -409,7 +409,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 12.4 Training Memory (GB): 12.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -459,7 +459,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.1 Training Memory (GB): 6.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -481,7 +481,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.6 Training Memory (GB): 9.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -531,7 +531,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (480,480) resolution: (480,480)
memory (GB): 9.2 Training Memory (GB): 9.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal Context Dataset: Pascal Context
@ -595,7 +595,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.6 Training Memory (GB): 9.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: COCO-Stuff 10k Dataset: COCO-Stuff 10k
@ -617,7 +617,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 13.2 Training Memory (GB): 13.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: COCO-Stuff 10k Dataset: COCO-Stuff 10k
@ -667,7 +667,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.6 Training Memory (GB): 9.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: COCO-Stuff 164k Dataset: COCO-Stuff 164k
@ -689,7 +689,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 13.2 Training Memory (GB): 13.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: COCO-Stuff 164k Dataset: COCO-Stuff 164k

View File

@ -31,7 +31,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 7.5 Training Memory (GB): 7.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -53,7 +53,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 11.0 Training Memory (GB): 11.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -75,7 +75,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 8.5 Training Memory (GB): 8.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -97,7 +97,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 12.5 Training Memory (GB): 12.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -119,7 +119,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 2.2 Training Memory (GB): 2.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -169,7 +169,7 @@ Models:
batch size: 1 batch size: 1
mode: FP16 mode: FP16
resolution: (512,1024) resolution: (512,1024)
memory (GB): 6.35 Training Memory (GB): 6.35
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -190,7 +190,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 2.5 Training Memory (GB): 2.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -240,7 +240,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 5.8 Training Memory (GB): 5.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -255,7 +255,7 @@ Models:
backbone: R-101-D16-MG124 backbone: R-101-D16-MG124
crop size: (512,1024) crop size: (512,1024)
lr schd: 80000 lr schd: 80000
memory (GB): 9.9 Training Memory (GB): 9.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -277,7 +277,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 2.1 Training Memory (GB): 2.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -299,7 +299,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 7.4 Training Memory (GB): 7.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -321,7 +321,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 10.9 Training Memory (GB): 10.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -343,7 +343,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 2.4 Training Memory (GB): 2.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -365,7 +365,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 8.4 Training Memory (GB): 8.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -387,7 +387,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 12.3 Training Memory (GB): 12.3
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -409,7 +409,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 10.6 Training Memory (GB): 10.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -431,7 +431,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 14.1 Training Memory (GB): 14.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -481,7 +481,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 7.6 Training Memory (GB): 7.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -503,7 +503,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 11.0 Training Memory (GB): 11.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -616,7 +616,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 1.93 Training Memory (GB): 1.93
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: LoveDA Dataset: LoveDA
@ -638,7 +638,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 7.37 Training Memory (GB): 7.37
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: LoveDA Dataset: LoveDA
@ -660,7 +660,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 10.84 Training Memory (GB): 10.84
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: LoveDA Dataset: LoveDA

View File

@ -27,7 +27,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 7.0 Training Memory (GB): 7.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -49,7 +49,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 10.6 Training Memory (GB): 10.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -71,7 +71,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 7.9 Training Memory (GB): 7.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -93,7 +93,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 12.0 Training Memory (GB): 12.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -171,7 +171,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.4 Training Memory (GB): 9.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -193,7 +193,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 13.0 Training Memory (GB): 13.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K

View File

@ -27,7 +27,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 7.3 Training Memory (GB): 7.3
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -48,7 +48,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 10.9 Training Memory (GB): 10.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -69,7 +69,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 9.2 Training Memory (GB): 9.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -91,7 +91,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 12.6 Training Memory (GB): 12.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -167,7 +167,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 8.8 Training Memory (GB): 8.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -189,7 +189,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 12.8 Training Memory (GB): 12.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K

View File

@ -26,7 +26,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 8.09 Training Memory (GB): 8.09
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K

View File

@ -26,7 +26,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 5.4 Training Memory (GB): 5.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -48,7 +48,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 6.2 Training Memory (GB): 6.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -70,7 +70,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 8.9 Training Memory (GB): 8.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -92,7 +92,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 10.1 Training Memory (GB): 10.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes

View File

@ -27,7 +27,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 8.6 Training Memory (GB): 8.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -49,7 +49,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 12.1 Training Memory (GB): 12.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -71,7 +71,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 9.8 Training Memory (GB): 9.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -93,7 +93,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 13.7 Training Memory (GB): 13.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -171,7 +171,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 10.1 Training Memory (GB): 10.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -193,7 +193,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 13.6 Training Memory (GB): 13.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K

View File

@ -27,7 +27,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 5.67 Training Memory (GB): 5.67
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -42,7 +42,7 @@ Models:
backbone: R-50-D32 backbone: R-50-D32
crop size: (512,1024) crop size: (512,1024)
lr schd: 80000 lr schd: 80000
memory (GB): 9.79 Training Memory (GB): 9.79
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -64,7 +64,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 5.67 Training Memory (GB): 5.67
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -79,7 +79,7 @@ Models:
backbone: R-50-D32 backbone: R-50-D32
crop size: (512,1024) crop size: (512,1024)
lr schd: 80000 lr schd: 80000
memory (GB): 9.94 Training Memory (GB): 9.94
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -101,7 +101,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 8.15 Training Memory (GB): 8.15
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -116,7 +116,7 @@ Models:
backbone: R-50-D32 backbone: R-50-D32
crop size: (512,1024) crop size: (512,1024)
lr schd: 80000 lr schd: 80000
memory (GB): 15.45 Training Memory (GB): 15.45
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -138,7 +138,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 8.46 Training Memory (GB): 8.46
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -174,7 +174,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 8.02 Training Memory (GB): 8.02
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -210,7 +210,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 9.67 Training Memory (GB): 9.67
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K

View File

@ -24,7 +24,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 3.3 Training Memory (GB): 3.3
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes

View File

@ -30,7 +30,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 5.7 Training Memory (GB): 5.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -52,7 +52,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 9.2 Training Memory (GB): 9.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -74,7 +74,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 6.5 Training Memory (GB): 6.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -96,7 +96,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 10.4 Training Memory (GB): 10.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -118,7 +118,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 1.7 Training Memory (GB): 1.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -168,7 +168,7 @@ Models:
batch size: 1 batch size: 1
mode: FP16 mode: FP16
resolution: (512,1024) resolution: (512,1024)
memory (GB): 5.37 Training Memory (GB): 5.37
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -189,7 +189,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 1.9 Training Memory (GB): 1.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -239,7 +239,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 1.6 Training Memory (GB): 1.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -261,7 +261,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 5.6 Training Memory (GB): 5.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -283,7 +283,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 9.1 Training Memory (GB): 9.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -305,7 +305,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 1.7 Training Memory (GB): 1.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -327,7 +327,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 6.3 Training Memory (GB): 6.3
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -349,7 +349,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 10.3 Training Memory (GB): 10.3
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -371,7 +371,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 3.4 Training Memory (GB): 3.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -414,7 +414,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 3.7 Training Memory (GB): 3.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -457,7 +457,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 4.5 Training Memory (GB): 4.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -500,7 +500,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 5.0 Training Memory (GB): 5.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -543,7 +543,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 3.2 Training Memory (GB): 3.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -565,7 +565,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 3.6 Training Memory (GB): 3.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -587,7 +587,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 4.3 Training Memory (GB): 4.3
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -609,7 +609,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 4.8 Training Memory (GB): 4.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -631,7 +631,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 8.5 Training Memory (GB): 8.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -653,7 +653,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 12.0 Training Memory (GB): 12.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -703,7 +703,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 5.7 Training Memory (GB): 5.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -725,7 +725,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.2 Training Memory (GB): 9.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug

View File

@ -28,7 +28,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 5.8 Training Memory (GB): 5.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -50,7 +50,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 9.2 Training Memory (GB): 9.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -72,7 +72,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 6.5 Training Memory (GB): 6.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -94,7 +94,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 10.5 Training Memory (GB): 10.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -172,7 +172,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 8.5 Training Memory (GB): 8.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -194,7 +194,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 12.0 Training Memory (GB): 12.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -244,7 +244,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 5.8 Training Memory (GB): 5.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -266,7 +266,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.2 Training Memory (GB): 9.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug

View File

@ -31,7 +31,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 1.7 Training Memory (GB): 1.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -53,7 +53,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 2.9 Training Memory (GB): 2.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -75,7 +75,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 6.2 Training Memory (GB): 6.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -181,7 +181,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 3.8 Training Memory (GB): 3.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -203,7 +203,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 4.9 Training Memory (GB): 4.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -225,7 +225,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 8.2 Training Memory (GB): 8.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -289,7 +289,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 1.8 Training Memory (GB): 1.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -311,7 +311,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 2.9 Training Memory (GB): 2.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -333,7 +333,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.2 Training Memory (GB): 6.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -397,7 +397,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (480,480) resolution: (480,480)
memory (GB): 6.1 Training Memory (GB): 6.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal Context Dataset: Pascal Context
@ -461,7 +461,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 1.72 Training Memory (GB): 1.72
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: LoveDA Dataset: LoveDA
@ -483,7 +483,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 2.9 Training Memory (GB): 2.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: LoveDA Dataset: LoveDA
@ -505,7 +505,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.25 Training Memory (GB): 6.25
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: LoveDA Dataset: LoveDA

View File

@ -26,7 +26,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (832,832) resolution: (832,832)
memory (GB): 1.7 Training Memory (GB): 1.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -90,7 +90,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (832,832) resolution: (832,832)
memory (GB): 2.53 Training Memory (GB): 2.53
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -154,7 +154,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (832,832) resolution: (832,832)
memory (GB): 3.08 Training Memory (GB): 3.08
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes

View File

@ -28,7 +28,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 5.869 Training Memory (GB): 5.869
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -50,7 +50,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 5.869 Training Memory (GB): 5.869
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -72,7 +72,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 6.759 Training Memory (GB): 6.759
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -94,7 +94,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 6.759 Training Memory (GB): 6.759
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -116,7 +116,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 9.425 Training Memory (GB): 9.425
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -138,7 +138,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 9.425 Training Memory (GB): 9.425
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -160,7 +160,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 10.815 Training Memory (GB): 10.815
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -182,7 +182,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 10.815 Training Memory (GB): 10.815
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -204,7 +204,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.0 Training Memory (GB): 9.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -226,7 +226,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.0 Training Memory (GB): 9.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -248,7 +248,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 12.562 Training Memory (GB): 12.562
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -270,7 +270,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 12.562 Training Memory (GB): 12.562
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -292,7 +292,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 5.9 Training Memory (GB): 5.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -314,7 +314,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 5.9 Training Memory (GB): 5.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -336,7 +336,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.465 Training Memory (GB): 9.465
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -358,7 +358,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.465 Training Memory (GB): 9.465
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug

View File

@ -27,7 +27,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 3.4 Training Memory (GB): 3.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -48,7 +48,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 3.6 Training Memory (GB): 3.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -69,7 +69,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 3.9 Training Memory (GB): 3.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -90,7 +90,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 5.1 Training Memory (GB): 5.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -111,7 +111,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.5 Training Memory (GB): 6.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20k Dataset: ADE20k
@ -132,7 +132,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.5 Training Memory (GB): 6.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20k Dataset: ADE20k
@ -153,7 +153,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.8 Training Memory (GB): 6.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20k Dataset: ADE20k
@ -174,7 +174,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 8.2 Training Memory (GB): 8.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20k Dataset: ADE20k

View File

@ -26,7 +26,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 8.9 Training Memory (GB): 8.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -48,7 +48,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 8.9 Training Memory (GB): 8.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -70,7 +70,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 5.3 Training Memory (GB): 5.3
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -92,7 +92,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 5.3 Training Memory (GB): 5.3
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes

View File

@ -28,7 +28,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 7.4 Training Memory (GB): 7.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -49,7 +49,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 10.9 Training Memory (GB): 10.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -70,7 +70,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 8.9 Training Memory (GB): 8.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -92,7 +92,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 12.8 Training Memory (GB): 12.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -168,7 +168,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.1 Training Memory (GB): 9.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -190,7 +190,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 12.6 Training Memory (GB): 12.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -240,7 +240,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.4 Training Memory (GB): 6.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -262,7 +262,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.8 Training Memory (GB): 9.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug

View File

@ -28,7 +28,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 3.5 Training Memory (GB): 3.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -50,7 +50,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 4.7 Training Memory (GB): 4.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -72,7 +72,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 8.0 Training Memory (GB): 8.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -191,7 +191,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 8.8 Training Memory (GB): 8.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -212,7 +212,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 8.8 Training Memory (GB): 8.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -233,7 +233,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.7 Training Memory (GB): 6.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -255,7 +255,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 7.9 Training Memory (GB): 7.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -277,7 +277,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 11.2 Training Memory (GB): 11.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -341,7 +341,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 3.5 Training Memory (GB): 3.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -363,7 +363,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 4.7 Training Memory (GB): 4.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -385,7 +385,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 8.1 Training Memory (GB): 8.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug

View File

@ -27,7 +27,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 3.1 Training Memory (GB): 3.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -49,7 +49,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 4.2 Training Memory (GB): 4.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -71,7 +71,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 5.1 Training Memory (GB): 5.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -93,7 +93,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.1 Training Memory (GB): 6.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K

View File

@ -28,7 +28,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 7.0 Training Memory (GB): 7.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -50,7 +50,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 10.5 Training Memory (GB): 10.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -72,7 +72,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 7.9 Training Memory (GB): 7.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -94,7 +94,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 11.9 Training Memory (GB): 11.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -172,7 +172,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.0 Training Memory (GB): 9.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -194,7 +194,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 12.5 Training Memory (GB): 12.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -244,7 +244,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.9 Training Memory (GB): 6.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -266,7 +266,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 10.4 Training Memory (GB): 10.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug

View File

@ -34,7 +34,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 6.1 Training Memory (GB): 6.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -56,7 +56,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 9.6 Training Memory (GB): 9.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -78,7 +78,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 6.9 Training Memory (GB): 6.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -100,7 +100,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 10.9 Training Memory (GB): 10.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -122,7 +122,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 1.7 Training Memory (GB): 1.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -172,7 +172,7 @@ Models:
batch size: 1 batch size: 1
mode: FP16 mode: FP16
resolution: (512,1024) resolution: (512,1024)
memory (GB): 5.34 Training Memory (GB): 5.34
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -193,7 +193,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 1.9 Training Memory (GB): 1.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -243,7 +243,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 1.5 Training Memory (GB): 1.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -265,7 +265,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 6.0 Training Memory (GB): 6.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -287,7 +287,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 9.5 Training Memory (GB): 9.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -309,7 +309,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 1.7 Training Memory (GB): 1.7
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -331,7 +331,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 6.8 Training Memory (GB): 6.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -353,7 +353,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 10.8 Training Memory (GB): 10.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -375,7 +375,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 8.5 Training Memory (GB): 8.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -397,7 +397,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 12.0 Training Memory (GB): 12.0
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -447,7 +447,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.1 Training Memory (GB): 6.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -469,7 +469,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.6 Training Memory (GB): 9.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -519,7 +519,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (480,480) resolution: (480,480)
memory (GB): 8.8 Training Memory (GB): 8.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal Context Dataset: Pascal Context
@ -583,7 +583,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.6 Training Memory (GB): 9.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: COCO-Stuff 10k Dataset: COCO-Stuff 10k
@ -605,7 +605,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 13.2 Training Memory (GB): 13.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: COCO-Stuff 10k Dataset: COCO-Stuff 10k
@ -655,7 +655,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.6 Training Memory (GB): 9.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: COCO-Stuff 164k Dataset: COCO-Stuff 164k
@ -677,7 +677,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 13.2 Training Memory (GB): 13.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: COCO-Stuff 164k Dataset: COCO-Stuff 164k
@ -755,7 +755,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 1.45 Training Memory (GB): 1.45
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: LoveDA Dataset: LoveDA
@ -777,7 +777,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.14 Training Memory (GB): 6.14
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: LoveDA Dataset: LoveDA
@ -799,7 +799,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.61 Training Memory (GB): 9.61
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: LoveDA Dataset: LoveDA

View File

@ -27,7 +27,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 11.4 Training Memory (GB): 11.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -49,7 +49,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 11.8 Training Memory (GB): 11.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -71,7 +71,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 11.9 Training Memory (GB): 11.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -93,7 +93,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 13.2 Training Memory (GB): 13.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -115,7 +115,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 14.2 Training Memory (GB): 14.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20k Dataset: ADE20k
@ -137,7 +137,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 14.2 Training Memory (GB): 14.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20k Dataset: ADE20k
@ -159,7 +159,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 14.6 Training Memory (GB): 14.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20k Dataset: ADE20k
@ -181,7 +181,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 16.2 Training Memory (GB): 16.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20k Dataset: ADE20k

View File

@ -26,7 +26,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 2.1 Training Memory (GB): 2.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20k Dataset: ADE20k
@ -48,7 +48,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 2.6 Training Memory (GB): 2.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20k Dataset: ADE20k
@ -70,7 +70,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 3.6 Training Memory (GB): 3.6
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20k Dataset: ADE20k
@ -92,7 +92,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 4.8 Training Memory (GB): 4.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20k Dataset: ADE20k
@ -114,7 +114,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.1 Training Memory (GB): 6.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20k Dataset: ADE20k
@ -136,7 +136,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 7.2 Training Memory (GB): 7.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20k Dataset: ADE20k
@ -158,7 +158,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (640,640) resolution: (640,640)
memory (GB): 11.5 Training Memory (GB): 11.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20k Dataset: ADE20k

View File

@ -27,7 +27,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 2.8 Training Memory (GB): 2.8
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -49,7 +49,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 3.9 Training Memory (GB): 3.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -71,7 +71,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 4.9 Training Memory (GB): 4.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -93,7 +93,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 5.9 Training Memory (GB): 5.9
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K

View File

@ -27,7 +27,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 18.4 Training Memory (GB): 18.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -49,7 +49,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 19.54 Training Memory (GB): 19.54
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -64,7 +64,7 @@ Models:
backbone: ViT-L backbone: ViT-L
crop size: (512,512) crop size: (512,512)
lr schd: 160000 lr schd: 160000
memory (GB): 10.96 Training Memory (GB): 10.96
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -86,7 +86,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 17.3 Training Memory (GB): 17.3
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K

View File

@ -26,7 +26,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 5.02 Training Memory (GB): 5.02
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -48,7 +48,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.17 Training Memory (GB): 6.17
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -70,7 +70,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 7.61 Training Memory (GB): 7.61
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -106,7 +106,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 8.52 Training Memory (GB): 8.52
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K

View File

@ -22,7 +22,7 @@ Models:
backbone: UNet-S5-D16 backbone: UNet-S5-D16
crop size: (64,64) crop size: (64,64)
lr schd: 40000 lr schd: 40000
memory (GB): 0.68 Training Memory (GB): 0.68
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: DRIVE Dataset: DRIVE
@ -36,7 +36,7 @@ Models:
backbone: UNet-S5-D16 backbone: UNet-S5-D16
crop size: (64,64) crop size: (64,64)
lr schd: 40000 lr schd: 40000
memory (GB): 0.599 Training Memory (GB): 0.599
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: DRIVE Dataset: DRIVE
@ -50,7 +50,7 @@ Models:
backbone: UNet-S5-D16 backbone: UNet-S5-D16
crop size: (64,64) crop size: (64,64)
lr schd: 40000 lr schd: 40000
memory (GB): 0.596 Training Memory (GB): 0.596
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: DRIVE Dataset: DRIVE
@ -64,7 +64,7 @@ Models:
backbone: UNet-S5-D16 backbone: UNet-S5-D16
crop size: (128,128) crop size: (128,128)
lr schd: 40000 lr schd: 40000
memory (GB): 0.968 Training Memory (GB): 0.968
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: STARE Dataset: STARE
@ -78,7 +78,7 @@ Models:
backbone: UNet-S5-D16 backbone: UNet-S5-D16
crop size: (128,128) crop size: (128,128)
lr schd: 40000 lr schd: 40000
memory (GB): 0.982 Training Memory (GB): 0.982
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: STARE Dataset: STARE
@ -92,7 +92,7 @@ Models:
backbone: UNet-S5-D16 backbone: UNet-S5-D16
crop size: (128,128) crop size: (128,128)
lr schd: 40000 lr schd: 40000
memory (GB): 0.999 Training Memory (GB): 0.999
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: STARE Dataset: STARE
@ -106,7 +106,7 @@ Models:
backbone: UNet-S5-D16 backbone: UNet-S5-D16
crop size: (128,128) crop size: (128,128)
lr schd: 40000 lr schd: 40000
memory (GB): 0.968 Training Memory (GB): 0.968
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: CHASE_DB1 Dataset: CHASE_DB1
@ -120,7 +120,7 @@ Models:
backbone: UNet-S5-D16 backbone: UNet-S5-D16
crop size: (128,128) crop size: (128,128)
lr schd: 40000 lr schd: 40000
memory (GB): 0.982 Training Memory (GB): 0.982
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: CHASE_DB1 Dataset: CHASE_DB1
@ -134,7 +134,7 @@ Models:
backbone: UNet-S5-D16 backbone: UNet-S5-D16
crop size: (128,128) crop size: (128,128)
lr schd: 40000 lr schd: 40000
memory (GB): 0.999 Training Memory (GB): 0.999
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: CHASE_DB1 Dataset: CHASE_DB1
@ -148,7 +148,7 @@ Models:
backbone: UNet-S5-D16 backbone: UNet-S5-D16
crop size: (256,256) crop size: (256,256)
lr schd: 40000 lr schd: 40000
memory (GB): 2.525 Training Memory (GB): 2.525
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: HRF Dataset: HRF
@ -162,7 +162,7 @@ Models:
backbone: UNet-S5-D16 backbone: UNet-S5-D16
crop size: (256,256) crop size: (256,256)
lr schd: 40000 lr schd: 40000
memory (GB): 2.588 Training Memory (GB): 2.588
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: HRF Dataset: HRF
@ -176,7 +176,7 @@ Models:
backbone: UNet-S5-D16 backbone: UNet-S5-D16
crop size: (256,256) crop size: (256,256)
lr schd: 40000 lr schd: 40000
memory (GB): 2.604 Training Memory (GB): 2.604
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: HRF Dataset: HRF

View File

@ -28,7 +28,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 6.4 Training Memory (GB): 6.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -50,7 +50,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,1024) resolution: (512,1024)
memory (GB): 7.4 Training Memory (GB): 7.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -72,7 +72,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 7.2 Training Memory (GB): 7.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -94,7 +94,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (769,769) resolution: (769,769)
memory (GB): 8.4 Training Memory (GB): 8.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Cityscapes Dataset: Cityscapes
@ -172,7 +172,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 8.1 Training Memory (GB): 8.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -194,7 +194,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.1 Training Memory (GB): 9.1
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -244,7 +244,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 6.4 Training Memory (GB): 6.4
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug
@ -266,7 +266,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 7.5 Training Memory (GB): 7.5
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug Dataset: Pascal VOC 2012 + Aug

View File

@ -26,7 +26,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.2 Training Memory (GB): 9.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -48,7 +48,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.2 Training Memory (GB): 9.2
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -70,7 +70,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.21 Training Memory (GB): 9.21
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -92,7 +92,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 4.68 Training Memory (GB): 4.68
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -114,7 +114,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 4.68 Training Memory (GB): 4.68
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -136,7 +136,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 5.69 Training Memory (GB): 5.69
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -158,7 +158,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 5.69 Training Memory (GB): 5.69
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -180,7 +180,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 7.75 Training Memory (GB): 7.75
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -202,7 +202,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 7.75 Training Memory (GB): 7.75
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -224,7 +224,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.21 Training Memory (GB): 9.21
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K
@ -246,7 +246,7 @@ Models:
batch size: 1 batch size: 1
mode: FP32 mode: FP32
resolution: (512,512) resolution: (512,512)
memory (GB): 9.21 Training Memory (GB): 9.21
Results: Results:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: ADE20K Dataset: ADE20K