[WIP] Add Swin Transformer (#511)
* add Swin Transformer * add Swin Transformer * fixed import * Add some swin training settings. * Fix some filename error. * Fix attribute name: pretrain -> pretrained * Upload mmcls implementation of swin transformer. * Refactor Swin Transformer to follow mmcls style. * Refactor init_weigths of swin_transformer.py * Fix lint * Match inference precision * Add some comments * Add swin_convert to load official style ckpt * Remove arg: auto_pad * 1. Complete comments for each block; 2. Correct weight convert function; 3. Fix the pad of Patch Merging; * Clean function args. * Fix vit unit test. * 1. Add swin transformer unit tests; 2. Fix some pad bug; 3. Modify config to adapt new swin implementation; * Modify config arg * Update readme.md of swin * Fix config arg error and Add some swin benchmark msg. * Add MeM and ms test content for readme.md of swin transformer. * Fix doc string of swin module * 1. Register swin transformer to model list; 2. Modify pth url which keep meta attribute; * Update swin.py * Merge config settings. * Modify config style. * Update README.md Add ViT link * Modify main readme.md Co-authored-by: Jiarui XU <xvjiarui0826@gmail.com> Co-authored-by: sennnnn <201730271412@mail.scut.edu.cn> Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>pull/1801/head
parent
5245edb0a0
commit
214d083cce
13
README.md
13
README.md
|
@ -59,11 +59,12 @@ Supported backbones:
|
|||
|
||||
- [x] ResNet (CVPR'2016)
|
||||
- [x] ResNeXt (CVPR'2017)
|
||||
- [x] [HRNet (CVPR'2019)](configs/hrnet/README.md)
|
||||
- [x] [ResNeSt (ArXiv'2020)](configs/resnest/README.md)
|
||||
- [x] [MobileNetV2 (CVPR'2018)](configs/mobilenet_v2/README.md)
|
||||
- [x] [MobileNetV3 (ICCV'2019)](configs/mobilenet_v3/README.md)
|
||||
- [x] [Vision Transformer (ICLR'2021)]
|
||||
- [x] [HRNet (CVPR'2019)](configs/hrnet)
|
||||
- [x] [ResNeSt (ArXiv'2020)](configs/resnest)
|
||||
- [x] [MobileNetV2 (CVPR'2018)](configs/mobilenet_v2)
|
||||
- [x] [MobileNetV3 (ICCV'2019)](configs/mobilenet_v3)
|
||||
- [x] [Vision Transformer (ICLR'2021)](configs/vit)
|
||||
- [x] [Swin Transformer (arXiV'2021)](configs/swin)
|
||||
|
||||
Supported methods:
|
||||
|
||||
|
@ -71,7 +72,7 @@ Supported methods:
|
|||
- [x] [UNet (MICCAI'2016/Nat. Methods'2019)](configs/unet)
|
||||
- [x] [PSPNet (CVPR'2017)](configs/pspnet)
|
||||
- [x] [DeepLabV3 (ArXiv'2017)](configs/deeplabv3)
|
||||
- [x] [Mixed Precision (FP16) Training (ArXiv'2017)](configs/fp16/README.md)
|
||||
- [x] [Mixed Precision (FP16) Training (ArXiv'2017)](configs/fp16)
|
||||
- [x] [PSANet (ECCV'2018)](configs/psanet)
|
||||
- [x] [DeepLabV3+ (CVPR'2018)](configs/deeplabv3plus)
|
||||
- [x] [UPerNet (ECCV'2018)](configs/upernet)
|
||||
|
|
|
@ -58,18 +58,20 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
|
|||
|
||||
- [x] ResNet (CVPR'2016)
|
||||
- [x] ResNeXt (CVPR'2017)
|
||||
- [x] [HRNet (CVPR'2019)](configs/hrnet/README.md)
|
||||
- [x] [ResNeSt (ArXiv'2020)](configs/resnest/README.md)
|
||||
- [x] [MobileNetV2 (CVPR'2018)](configs/mobilenet_v2/README.md)
|
||||
- [x] [MobileNetV3 (ICCV'2019)](configs/mobilenet_v3/README.md)
|
||||
- [x] [Vision Transformer (ICLR'2021)]
|
||||
- [x] [HRNet (CVPR'2019)](configs/hrnet)
|
||||
- [x] [ResNeSt (ArXiv'2020)](configs/resnest)
|
||||
- [x] [MobileNetV2 (CVPR'2018)](configs/mobilenet_v2)
|
||||
- [x] [MobileNetV3 (ICCV'2019)](configs/mobilenet_v3)
|
||||
- [x] [Vision Transformer (ICLR'2021)](configs/vit)
|
||||
- [x] [Swin Transformer (arXiV'2021)](configs/swin)
|
||||
|
||||
已支持的算法:
|
||||
|
||||
- [x] [FCN (CVPR'2015/TPAMI'2017)](configs/fcn)
|
||||
- [x] [UNet (MICCAI'2016/Nat. Methods'2019)](configs/unet)
|
||||
- [x] [PSPNet (CVPR'2017)](configs/pspnet)
|
||||
- [x] [DeepLabV3 (CVPR'2017)](configs/deeplabv3)
|
||||
- [x] [Mixed Precision (FP16) Training (ArXiv'2017)](configs/fp16/README.md)
|
||||
- [x] [DeepLabV3 (ArXiv'2017)](configs/deeplabv3)
|
||||
- [x] [Mixed Precision (FP16) Training (ArXiv'2017)](configs/fp16)
|
||||
- [x] [PSANet (ECCV'2018)](configs/psanet)
|
||||
- [x] [DeepLabV3+ (CVPR'2018)](configs/deeplabv3plus)
|
||||
- [x] [UPerNet (ECCV'2018)](configs/upernet)
|
||||
|
|
|
@ -0,0 +1,55 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
backbone_norm_cfg = dict(type='LN', requires_grad=True)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained=None,
|
||||
backbone=dict(
|
||||
type='SwinTransformer',
|
||||
pretrain_img_size=224,
|
||||
embed_dims=96,
|
||||
patch_size=4,
|
||||
window_size=7,
|
||||
mlp_ratio=4,
|
||||
depths=[2, 2, 6, 2],
|
||||
num_heads=[3, 6, 12, 24],
|
||||
strides=(4, 2, 2, 2),
|
||||
out_indices=(0, 1, 2, 3),
|
||||
qkv_bias=True,
|
||||
qk_scale=None,
|
||||
patch_norm=True,
|
||||
drop_rate=0.,
|
||||
attn_drop_rate=0.,
|
||||
drop_path_rate=0.3,
|
||||
use_abs_pos_embed=False,
|
||||
act_cfg=dict(type='GELU'),
|
||||
norm_cfg=backbone_norm_cfg,
|
||||
pretrain_style='official'),
|
||||
decode_head=dict(
|
||||
type='UPerHead',
|
||||
in_channels=[96, 192, 384, 768],
|
||||
in_index=[0, 1, 2, 3],
|
||||
pool_scales=(1, 2, 3, 6),
|
||||
channels=512,
|
||||
dropout_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
auxiliary_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=384,
|
||||
in_index=2,
|
||||
channels=256,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
dropout_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||||
# model training and testing settings
|
||||
train_cfg=dict(),
|
||||
test_cfg=dict(mode='whole'))
|
|
@ -0,0 +1,27 @@
|
|||
# Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
|
||||
|
||||
## Introduction
|
||||
|
||||
[ALGORITHM]
|
||||
|
||||
```latex
|
||||
@article{liu2021Swin,
|
||||
title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
|
||||
author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
|
||||
journal={arXiv preprint arXiv:2103.14030},
|
||||
year={2021}
|
||||
}
|
||||
```
|
||||
|
||||
## Results and models
|
||||
|
||||
### ADE20K
|
||||
|
||||
| Method | Backbone | Crop Size | pretrain | pretrain img size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
|
||||
| ------ | -------- | --------- | ---------- | ------- | -------- | --- | --- | -------------- | ----- | ------------: | -------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| UperNet | Swin-T | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 5.02 | 21.06 | 44.41 | 45.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542.log.json) |
|
||||
| UperNet | Swin-S | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 6.17 | 14.72 | 47.72 | 49.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015.log.json) |
|
||||
| UperNet | Swin-B | 512x512 | ImageNet-1K | 224x224 | 16 | 160000 | 7.61 | 12.65 | 47.99 | 49.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340.log.json) |
|
||||
| UperNet | Swin-B | 512x512 | ImageNet-22K | 224x224 | 16 | 160000 | - | - | 50.31 | 51.9 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650.log.json) |
|
||||
| UperNet | Swin-B | 512x512 | ImageNet-1K | 384x384 | 16 | 160000 | 8.52 | 12.10 | 48.35 | 49.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020.log.json) |
|
||||
| UperNet | Swin-B | 512x512 | ImageNet-22K | 384x384 | 16 | 160000 | - | - | 50.76 | 52.4 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459.log.json) |
|
|
@ -0,0 +1,15 @@
|
|||
_base_ = [
|
||||
'upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_'
|
||||
'pretrain_224x224_1K.py'
|
||||
]
|
||||
model = dict(
|
||||
pretrained=\
|
||||
'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth', # noqa
|
||||
backbone=dict(
|
||||
pretrain_img_size=384,
|
||||
embed_dims=128,
|
||||
depths=[2, 2, 18, 2],
|
||||
num_heads=[4, 8, 16, 32],
|
||||
window_size=12),
|
||||
decode_head=dict(in_channels=[128, 256, 512, 1024], num_classes=150),
|
||||
auxiliary_head=dict(in_channels=512, num_classes=150))
|
|
@ -0,0 +1,8 @@
|
|||
_base_ = [
|
||||
'./upernet_swin_base_patch4_window12_512x512_160k_ade20k_'
|
||||
'pretrain_384x384_1K.py'
|
||||
]
|
||||
model = dict(
|
||||
pretrained=\
|
||||
'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth', # noqa
|
||||
)
|
|
@ -0,0 +1,13 @@
|
|||
_base_ = [
|
||||
'./upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_'
|
||||
'pretrain_224x224_1K.py'
|
||||
]
|
||||
model = dict(
|
||||
pretrained=\
|
||||
'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth', # noqa
|
||||
backbone=dict(
|
||||
embed_dims=128,
|
||||
depths=[2, 2, 18, 2],
|
||||
num_heads=[4, 8, 16, 32]),
|
||||
decode_head=dict(in_channels=[128, 256, 512, 1024], num_classes=150),
|
||||
auxiliary_head=dict(in_channels=512, num_classes=150))
|
|
@ -0,0 +1,8 @@
|
|||
_base_ = [
|
||||
'./upernet_swin_base_patch4_window7_512x512_160k_ade20k_'
|
||||
'pretrain_224x224_1K.py'
|
||||
]
|
||||
model = dict(
|
||||
pretrained=\
|
||||
'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth', # noqa
|
||||
)
|
|
@ -0,0 +1,17 @@
|
|||
_base_ = [
|
||||
'./upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_'
|
||||
'pretrain_224x224_1K.py'
|
||||
]
|
||||
model = dict(
|
||||
pretrained=\
|
||||
'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth', # noqa
|
||||
backbone=dict(
|
||||
depths=[2, 2, 18, 2]),
|
||||
decode_head=dict(
|
||||
in_channels=[96, 192, 384, 768],
|
||||
num_classes=150
|
||||
),
|
||||
auxiliary_head=dict(
|
||||
in_channels=384,
|
||||
num_classes=150
|
||||
))
|
|
@ -0,0 +1,46 @@
|
|||
_base_ = [
|
||||
'../_base_/models/upernet_swin.py', '../_base_/datasets/ade20k.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||
]
|
||||
model = dict(
|
||||
pretrained=\
|
||||
'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth', # noqa
|
||||
backbone=dict(
|
||||
embed_dims=96,
|
||||
depths=[2, 2, 6, 2],
|
||||
num_heads=[3, 6, 12, 24],
|
||||
window_size=7,
|
||||
use_abs_pos_embed=False,
|
||||
drop_path_rate=0.3,
|
||||
patch_norm=True,
|
||||
pretrain_style='official'),
|
||||
decode_head=dict(in_channels=[96, 192, 384, 768], num_classes=150),
|
||||
auxiliary_head=dict(in_channels=384, num_classes=150))
|
||||
|
||||
# AdamW optimizer, no weight decay for position embedding & layer norm
|
||||
# in backbone
|
||||
optimizer = dict(
|
||||
_delete_=True,
|
||||
type='AdamW',
|
||||
lr=0.00006,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.01,
|
||||
paramwise_cfg=dict(
|
||||
custom_keys={
|
||||
'absolute_pos_embed': dict(decay_mult=0.),
|
||||
'relative_position_bias_table': dict(decay_mult=0.),
|
||||
'norm': dict(decay_mult=0.)
|
||||
}))
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
data = dict(samples_per_gpu=2)
|
|
@ -6,11 +6,12 @@ from .mobilenet_v3 import MobileNetV3
|
|||
from .resnest import ResNeSt
|
||||
from .resnet import ResNet, ResNetV1c, ResNetV1d
|
||||
from .resnext import ResNeXt
|
||||
from .swin import SwinTransformer
|
||||
from .unet import UNet
|
||||
from .vit import VisionTransformer
|
||||
|
||||
__all__ = [
|
||||
'ResNet', 'ResNetV1c', 'ResNetV1d', 'ResNeXt', 'HRNet', 'FastSCNN',
|
||||
'ResNeSt', 'MobileNetV2', 'UNet', 'CGNet', 'MobileNetV3',
|
||||
'VisionTransformer'
|
||||
'VisionTransformer', 'SwinTransformer'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,778 @@
|
|||
import warnings
|
||||
from copy import deepcopy
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from mmcv.cnn import build_norm_layer, trunc_normal_init
|
||||
from mmcv.cnn.bricks.registry import ATTENTION
|
||||
from mmcv.cnn.bricks.transformer import FFN, build_dropout
|
||||
from mmcv.cnn.utils.weight_init import constant_init
|
||||
from mmcv.runner import _load_checkpoint
|
||||
from mmcv.runner.base_module import BaseModule, ModuleList
|
||||
from torch.nn.modules.linear import Linear
|
||||
from torch.nn.modules.normalization import LayerNorm
|
||||
from torch.nn.modules.utils import _pair as to_2tuple
|
||||
|
||||
from ...utils import get_root_logger
|
||||
from ..builder import BACKBONES
|
||||
from ..utils import PatchEmbed, swin_convert
|
||||
|
||||
|
||||
class PatchMerging(BaseModule):
|
||||
"""Merge patch feature map.
|
||||
|
||||
This layer use nn.Unfold to group feature map by kernel_size, and use norm
|
||||
and linear layer to embed grouped feature map.
|
||||
Args:
|
||||
in_channels (int): The num of input channels.
|
||||
out_channels (int): The num of output channels.
|
||||
stride (int | tuple): the stride of the sliding length in the
|
||||
unfold layer. Defaults: 2. (Default to be equal with kernel_size).
|
||||
bias (bool, optional): Whether to add bias in linear layer or not.
|
||||
Defaults: False.
|
||||
norm_cfg (dict, optional): Config dict for normalization layer.
|
||||
Defaults: dict(type='LN').
|
||||
init_cfg (dict, optional): The extra config for initialization.
|
||||
Defaults: None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
stride=2,
|
||||
bias=False,
|
||||
norm_cfg=dict(type='LN'),
|
||||
init_cfg=None):
|
||||
super().__init__(init_cfg)
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.stride = stride
|
||||
|
||||
self.sampler = nn.Unfold(
|
||||
kernel_size=stride, dilation=1, padding=0, stride=stride)
|
||||
|
||||
sample_dim = stride**2 * in_channels
|
||||
|
||||
if norm_cfg is not None:
|
||||
self.norm = build_norm_layer(norm_cfg, sample_dim)[1]
|
||||
else:
|
||||
self.norm = None
|
||||
|
||||
self.reduction = nn.Linear(sample_dim, out_channels, bias=bias)
|
||||
|
||||
def forward(self, x, hw_shape):
|
||||
"""
|
||||
x: x.shape -> [B, H*W, C]
|
||||
hw_shape: (H, W)
|
||||
"""
|
||||
B, L, C = x.shape
|
||||
H, W = hw_shape
|
||||
assert L == H * W, 'input feature has wrong size'
|
||||
|
||||
x = x.view(B, H, W, C).permute([0, 3, 1, 2]) # B, C, H, W
|
||||
|
||||
# stride is fixed to be equal to kernel_size.
|
||||
if (H % self.stride != 0) or (W % self.stride != 0):
|
||||
x = F.pad(x, (0, W % self.stride, 0, H % self.stride))
|
||||
|
||||
# Use nn.Unfold to merge patch. About 25% faster than original method,
|
||||
# but need to modify pretrained model for compatibility
|
||||
x = self.sampler(x) # B, 4*C, H/2*W/2
|
||||
x = x.transpose(1, 2) # B, H/2*W/2, 4*C
|
||||
|
||||
x = self.norm(x) if self.norm else x
|
||||
x = self.reduction(x)
|
||||
|
||||
down_hw_shape = (H + 1) // 2, (W + 1) // 2
|
||||
return x, down_hw_shape
|
||||
|
||||
|
||||
@ATTENTION.register_module()
|
||||
class WindowMSA(BaseModule):
|
||||
"""Window based multi-head self-attention (W-MSA) module with relative
|
||||
position bias.
|
||||
|
||||
Args:
|
||||
embed_dims (int): Number of input channels.
|
||||
window_size (tuple[int]): The height and width of the window.
|
||||
num_heads (int): Number of attention heads.
|
||||
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
|
||||
Default: True.
|
||||
qk_scale (float | None, optional): Override default qk scale of
|
||||
head_dim ** -0.5 if set. Default: None.
|
||||
attn_drop_rate (float, optional): Dropout ratio of attention weight.
|
||||
Default: 0.0
|
||||
proj_drop_rate (float, optional): Dropout ratio of output. Default: 0.0
|
||||
init_cfg (dict | None, optional): The Config for initialization.
|
||||
Default: None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
embed_dims,
|
||||
num_heads,
|
||||
window_size,
|
||||
qkv_bias=True,
|
||||
qk_scale=None,
|
||||
attn_drop_rate=0.,
|
||||
proj_drop_rate=0.,
|
||||
init_cfg=None):
|
||||
|
||||
super().__init__()
|
||||
self.embed_dims = embed_dims
|
||||
self.window_size = window_size # Wh, Ww
|
||||
self.num_heads = num_heads
|
||||
head_embed_dims = embed_dims // num_heads
|
||||
self.scale = qk_scale or head_embed_dims**-0.5
|
||||
self.init_cfg = init_cfg
|
||||
|
||||
# define a parameter table of relative position bias
|
||||
self.relative_position_bias_table = nn.Parameter(
|
||||
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
|
||||
num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
||||
|
||||
# About 2x faster than original impl
|
||||
Wh, Ww = self.window_size
|
||||
rel_index_coords = self.double_step_seq(2 * Ww - 1, Wh, 1, Ww)
|
||||
rel_position_index = rel_index_coords + rel_index_coords.T
|
||||
rel_position_index = rel_position_index.flip(1).contiguous()
|
||||
self.register_buffer('relative_position_index', rel_position_index)
|
||||
|
||||
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop_rate)
|
||||
self.proj = nn.Linear(embed_dims, embed_dims)
|
||||
self.proj_drop = nn.Dropout(proj_drop_rate)
|
||||
|
||||
self.softmax = nn.Softmax(dim=-1)
|
||||
|
||||
def init_weights(self):
|
||||
trunc_normal_init(self.relative_position_bias_table, std=0.02)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
"""
|
||||
Args:
|
||||
|
||||
x (tensor): input features with shape of (num_windows*B, N, C)
|
||||
mask (tensor | None, Optional): mask with shape of (num_windows,
|
||||
Wh*Ww, Wh*Ww), value should be between (-inf, 0].
|
||||
"""
|
||||
B, N, C = x.shape
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
|
||||
C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv[0], qkv[1], qkv[
|
||||
2] # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
q = q * self.scale
|
||||
attn = (q @ k.transpose(-2, -1))
|
||||
|
||||
relative_position_bias = self.relative_position_bias_table[
|
||||
self.relative_position_index.view(-1)].view(
|
||||
self.window_size[0] * self.window_size[1],
|
||||
self.window_size[0] * self.window_size[1],
|
||||
-1) # Wh*Ww,Wh*Ww,nH
|
||||
relative_position_bias = relative_position_bias.permute(
|
||||
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
||||
attn = attn + relative_position_bias.unsqueeze(0)
|
||||
|
||||
if mask is not None:
|
||||
nW = mask.shape[0]
|
||||
attn = attn.view(B // nW, nW, self.num_heads, N,
|
||||
N) + mask.unsqueeze(1).unsqueeze(0)
|
||||
attn = attn.view(-1, self.num_heads, N, N)
|
||||
attn = self.softmax(attn)
|
||||
else:
|
||||
attn = self.softmax(attn)
|
||||
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def double_step_seq(step1, len1, step2, len2):
|
||||
seq1 = torch.arange(0, step1 * len1, step1)
|
||||
seq2 = torch.arange(0, step2 * len2, step2)
|
||||
return (seq1[:, None] + seq2[None, :]).reshape(1, -1)
|
||||
|
||||
|
||||
@ATTENTION.register_module()
|
||||
class ShiftWindowMSA(BaseModule):
|
||||
"""Shift Window Multihead Self-Attention Module.
|
||||
|
||||
Args:
|
||||
embed_dims (int): Number of input channels.
|
||||
num_heads (int): Number of attention heads.
|
||||
window_size (int): The height and width of the window.
|
||||
shift_size (int, optional): The shift step of each window towards
|
||||
right-bottom. If zero, act as regular window-msa. Defaults to 0.
|
||||
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
|
||||
Default: True
|
||||
qk_scale (float | None, optional): Override default qk scale of
|
||||
head_dim ** -0.5 if set. Defaults: None.
|
||||
attn_drop_rate (float, optional): Dropout ratio of attention weight.
|
||||
Defaults: 0.
|
||||
proj_drop_rate (float, optional): Dropout ratio of output.
|
||||
Defaults: 0.
|
||||
dropout_layer (dict, optional): The dropout_layer used before output.
|
||||
Defaults: dict(type='DropPath', drop_prob=0.).
|
||||
init_cfg (dict, optional): The extra config for initialization.
|
||||
Default: None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
embed_dims,
|
||||
num_heads,
|
||||
window_size,
|
||||
shift_size=0,
|
||||
qkv_bias=True,
|
||||
qk_scale=None,
|
||||
attn_drop_rate=0,
|
||||
proj_drop_rate=0,
|
||||
dropout_layer=dict(type='DropPath', drop_prob=0.),
|
||||
init_cfg=None):
|
||||
super().__init__(init_cfg)
|
||||
|
||||
self.window_size = window_size
|
||||
self.shift_size = shift_size
|
||||
assert 0 <= self.shift_size < self.window_size
|
||||
|
||||
self.w_msa = WindowMSA(
|
||||
embed_dims=embed_dims,
|
||||
num_heads=num_heads,
|
||||
window_size=to_2tuple(window_size),
|
||||
qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale,
|
||||
attn_drop_rate=attn_drop_rate,
|
||||
proj_drop_rate=proj_drop_rate,
|
||||
init_cfg=None)
|
||||
|
||||
self.drop = build_dropout(dropout_layer)
|
||||
|
||||
def forward(self, query, hw_shape):
|
||||
B, L, C = query.shape
|
||||
H, W = hw_shape
|
||||
assert L == H * W, 'input feature has wrong size'
|
||||
query = query.view(B, H, W, C)
|
||||
|
||||
# pad feature maps to multiples of window size
|
||||
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
||||
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
||||
query = F.pad(query, (0, 0, 0, pad_r, 0, pad_b))
|
||||
H_pad, W_pad = query.shape[1], query.shape[2]
|
||||
|
||||
# cyclic shift
|
||||
if self.shift_size > 0:
|
||||
shifted_query = torch.roll(
|
||||
query,
|
||||
shifts=(-self.shift_size, -self.shift_size),
|
||||
dims=(1, 2))
|
||||
|
||||
# calculate attention mask for SW-MSA
|
||||
img_mask = torch.zeros((1, H_pad, W_pad, 1),
|
||||
device=query.device) # 1 H W 1
|
||||
h_slices = (slice(0, -self.window_size),
|
||||
slice(-self.window_size,
|
||||
-self.shift_size), slice(-self.shift_size, None))
|
||||
w_slices = (slice(0, -self.window_size),
|
||||
slice(-self.window_size,
|
||||
-self.shift_size), slice(-self.shift_size, None))
|
||||
cnt = 0
|
||||
for h in h_slices:
|
||||
for w in w_slices:
|
||||
img_mask[:, h, w, :] = cnt
|
||||
cnt += 1
|
||||
|
||||
# nW, window_size, window_size, 1
|
||||
mask_windows = self.window_partition(img_mask)
|
||||
mask_windows = mask_windows.view(
|
||||
-1, self.window_size * self.window_size)
|
||||
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
||||
attn_mask = attn_mask.masked_fill(attn_mask != 0,
|
||||
float(-100.0)).masked_fill(
|
||||
attn_mask == 0, float(0.0))
|
||||
else:
|
||||
shifted_query = query
|
||||
attn_mask = None
|
||||
|
||||
# nW*B, window_size, window_size, C
|
||||
query_windows = self.window_partition(shifted_query)
|
||||
# nW*B, window_size*window_size, C
|
||||
query_windows = query_windows.view(-1, self.window_size**2, C)
|
||||
|
||||
# W-MSA/SW-MSA (nW*B, window_size*window_size, C)
|
||||
attn_windows = self.w_msa(query_windows, mask=attn_mask)
|
||||
|
||||
# merge windows
|
||||
attn_windows = attn_windows.view(-1, self.window_size,
|
||||
self.window_size, C)
|
||||
|
||||
# B H' W' C
|
||||
shifted_x = self.window_reverse(attn_windows, H_pad, W_pad)
|
||||
# reverse cyclic shift
|
||||
if self.shift_size > 0:
|
||||
x = torch.roll(
|
||||
shifted_x,
|
||||
shifts=(self.shift_size, self.shift_size),
|
||||
dims=(1, 2))
|
||||
else:
|
||||
x = shifted_x
|
||||
|
||||
if pad_r > 0 or pad_b:
|
||||
x = x[:, :H, :W, :].contiguous()
|
||||
|
||||
x = x.view(B, H * W, C)
|
||||
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
def window_reverse(self, windows, H, W):
|
||||
"""
|
||||
Args:
|
||||
windows: (num_windows*B, window_size, window_size, C)
|
||||
window_size (int): Window size
|
||||
H (int): Height of image
|
||||
W (int): Width of image
|
||||
Returns:
|
||||
x: (B, H, W, C)
|
||||
"""
|
||||
window_size = self.window_size
|
||||
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
||||
x = windows.view(B, H // window_size, W // window_size, window_size,
|
||||
window_size, -1)
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
||||
return x
|
||||
|
||||
def window_partition(self, x):
|
||||
"""
|
||||
Args:
|
||||
x: (B, H, W, C)
|
||||
window_size (int): window size
|
||||
Returns:
|
||||
windows: (num_windows*B, window_size, window_size, C)
|
||||
"""
|
||||
B, H, W, C = x.shape
|
||||
window_size = self.window_size
|
||||
x = x.view(B, H // window_size, window_size, W // window_size,
|
||||
window_size, C)
|
||||
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous()
|
||||
windows = windows.view(-1, window_size, window_size, C)
|
||||
return windows
|
||||
|
||||
|
||||
class SwinBlock(BaseModule):
|
||||
""""
|
||||
Args:
|
||||
embed_dims (int): The feature dimension.
|
||||
num_heads (int): Parallel attention heads.
|
||||
feedforward_channels (int): The hidden dimension for FFNs.
|
||||
window size (int, optional): The local window scale. Default: 7.
|
||||
shift (bool): whether to shift window or not. Default False.
|
||||
qkv_bias (int, optional): enable bias for qkv if True. Default: True.
|
||||
qk_scale (float | None, optional): Override default qk scale of
|
||||
head_dim ** -0.5 if set. Default: None.
|
||||
drop_rate (float, optional): Dropout rate. Default: 0.
|
||||
attn_drop_rate (float, optional): Attention dropout rate. Default: 0.
|
||||
drop_path_rate (float, optional): Stochastic depth rate. Default: 0.2.
|
||||
act_cfg (dict, optional): The config dict of activation function.
|
||||
Default: dict(type='GELU').
|
||||
norm_cfg (dict, optional): The config dict of nomalization.
|
||||
Default: dict(type='LN').
|
||||
init_cfg (dict | list | None, optional): The init config.
|
||||
Default: None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
embed_dims,
|
||||
num_heads,
|
||||
feedforward_channels,
|
||||
window_size=7,
|
||||
shift=False,
|
||||
qkv_bias=True,
|
||||
qk_scale=None,
|
||||
drop_rate=0.,
|
||||
attn_drop_rate=0.,
|
||||
drop_path_rate=0.,
|
||||
act_cfg=dict(type='GELU'),
|
||||
norm_cfg=dict(type='LN'),
|
||||
init_cfg=None):
|
||||
|
||||
super(SwinBlock, self).__init__()
|
||||
|
||||
self.init_cfg = init_cfg
|
||||
|
||||
self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]
|
||||
self.attn = ShiftWindowMSA(
|
||||
embed_dims=embed_dims,
|
||||
num_heads=num_heads,
|
||||
window_size=window_size,
|
||||
shift_size=window_size // 2 if shift else 0,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale,
|
||||
attn_drop_rate=attn_drop_rate,
|
||||
proj_drop_rate=drop_rate,
|
||||
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
|
||||
init_cfg=None)
|
||||
|
||||
self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
|
||||
self.ffn = FFN(
|
||||
embed_dims=embed_dims,
|
||||
feedforward_channels=feedforward_channels,
|
||||
num_fcs=2,
|
||||
ffn_drop=drop_rate,
|
||||
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
|
||||
act_cfg=act_cfg,
|
||||
add_identity=True,
|
||||
init_cfg=None)
|
||||
|
||||
def forward(self, x, hw_shape):
|
||||
identity = x
|
||||
x = self.norm1(x)
|
||||
x = self.attn(x, hw_shape)
|
||||
|
||||
x = x + identity
|
||||
|
||||
identity = x
|
||||
x = self.norm2(x)
|
||||
x = self.ffn(x, identity=identity)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class SwinBlockSequence(BaseModule):
|
||||
"""Implements one stage in Swin Transformer.
|
||||
|
||||
Args:
|
||||
embed_dims (int): The feature dimension.
|
||||
num_heads (int): Parallel attention heads.
|
||||
feedforward_channels (int): The hidden dimension for FFNs.
|
||||
depth (int): The number of blocks in this stage.
|
||||
window size (int): The local window scale. Default: 7.
|
||||
qkv_bias (int): enable bias for qkv if True. Default: True.
|
||||
qk_scale (float | None, optional): Override default qk scale of
|
||||
head_dim ** -0.5 if set. Default: None.
|
||||
drop_rate (float, optional): Dropout rate. Default: 0.
|
||||
attn_drop_rate (float, optional): Attention dropout rate. Default: 0.
|
||||
drop_path_rate (float, optional): Stochastic depth rate. Default: 0.2.
|
||||
downsample (BaseModule | None, optional): The downsample operation
|
||||
module. Default: None.
|
||||
act_cfg (dict, optional): The config dict of activation function.
|
||||
Default: dict(type='GELU').
|
||||
norm_cfg (dict, optional): The config dict of nomalization.
|
||||
Default: dict(type='LN').
|
||||
init_cfg (dict | list | None, optional): The init config.
|
||||
Default: None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
embed_dims,
|
||||
num_heads,
|
||||
feedforward_channels,
|
||||
depth,
|
||||
window_size=7,
|
||||
qkv_bias=True,
|
||||
qk_scale=None,
|
||||
drop_rate=0.,
|
||||
attn_drop_rate=0.,
|
||||
drop_path_rate=0.,
|
||||
downsample=None,
|
||||
act_cfg=dict(type='GELU'),
|
||||
norm_cfg=dict(type='LN'),
|
||||
init_cfg=None):
|
||||
super().__init__()
|
||||
|
||||
self.init_cfg = init_cfg
|
||||
|
||||
drop_path_rate = drop_path_rate if isinstance(
|
||||
drop_path_rate,
|
||||
list) else [deepcopy(drop_path_rate) for _ in range(depth)]
|
||||
|
||||
self.blocks = ModuleList()
|
||||
for i in range(depth):
|
||||
block = SwinBlock(
|
||||
embed_dims=embed_dims,
|
||||
num_heads=num_heads,
|
||||
feedforward_channels=feedforward_channels,
|
||||
window_size=window_size,
|
||||
shift=False if i % 2 == 0 else True,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale,
|
||||
drop_rate=drop_rate,
|
||||
attn_drop_rate=attn_drop_rate,
|
||||
drop_path_rate=drop_path_rate[i],
|
||||
act_cfg=act_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
init_cfg=None)
|
||||
self.blocks.append(block)
|
||||
|
||||
self.downsample = downsample
|
||||
|
||||
def forward(self, x, hw_shape):
|
||||
for block in self.blocks:
|
||||
x = block(x, hw_shape)
|
||||
|
||||
if self.downsample:
|
||||
x_down, down_hw_shape = self.downsample(x, hw_shape)
|
||||
return x_down, down_hw_shape, x, hw_shape
|
||||
else:
|
||||
return x, hw_shape, x, hw_shape
|
||||
|
||||
|
||||
@BACKBONES.register_module()
|
||||
class SwinTransformer(BaseModule):
|
||||
""" Swin Transformer
|
||||
A PyTorch implement of : `Swin Transformer:
|
||||
Hierarchical Vision Transformer using Shifted Windows` -
|
||||
https://arxiv.org/abs/2103.14030
|
||||
|
||||
Inspiration from
|
||||
https://github.com/microsoft/Swin-Transformer
|
||||
|
||||
Args:
|
||||
pretrain_img_size (int | tuple[int]): The size of input image when
|
||||
pretrain. Defaults: 224.
|
||||
in_channels (int): The num of input channels.
|
||||
Defaults: 3.
|
||||
embed_dims (int): The feature dimension. Default: 96.
|
||||
patch_size (int | tuple[int]): Patch size. Default: 4.
|
||||
window_size (int): Window size. Default: 7.
|
||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||
Default: 4.
|
||||
depths (tuple[int]): Depths of each Swin Transformer stage.
|
||||
Default: (2, 2, 6, 2).
|
||||
num_heads (tuple[int]): Parallel attention heads of each Swin
|
||||
Transformer stage. Default: (3, 6, 12, 24).
|
||||
strides (tuple[int]): The patch merging or patch embedding stride of
|
||||
each Swin Transformer stage. (In swin, we set kernel size equal to
|
||||
stride.) Default: (4, 2, 2, 2).
|
||||
out_indices (tuple[int]): Output from which stages.
|
||||
Default: (0, 1, 2, 3).
|
||||
qkv_bias (bool, optional): If True, add a learnable bias to query, key,
|
||||
value. Default: True
|
||||
qk_scale (float | None, optional): Override default qk scale of
|
||||
head_dim ** -0.5 if set. Default: None.
|
||||
patch_norm (bool): If add a norm layer for patch embed and patch
|
||||
merging. Default: True.
|
||||
drop_rate (float): Dropout rate. Defaults: 0.
|
||||
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
||||
drop_path_rate (float): Stochastic depth rate. Defaults: 0.1.
|
||||
use_abs_pos_embed (bool): If True, add absolute position embedding to
|
||||
the patch embedding. Defaults: False.
|
||||
act_cfg (dict): Config dict for activation layer.
|
||||
Default: dict(type='LN').
|
||||
norm_cfg (dict): Config dict for normalization layer at
|
||||
output of backone. Defaults: dict(type='LN').
|
||||
pretrain_style (str): Choose to use official or mmcls pretrain weights.
|
||||
Default: official.
|
||||
pretrained (str, optional): model pretrained path. Default: None.
|
||||
init_cfg (dict, optional): The Config for initialization.
|
||||
Defaults to None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
pretrain_img_size=224,
|
||||
in_channels=3,
|
||||
embed_dims=96,
|
||||
patch_size=4,
|
||||
window_size=7,
|
||||
mlp_ratio=4,
|
||||
depths=(2, 2, 6, 2),
|
||||
num_heads=(3, 6, 12, 24),
|
||||
strides=(4, 2, 2, 2),
|
||||
out_indices=(0, 1, 2, 3),
|
||||
qkv_bias=True,
|
||||
qk_scale=None,
|
||||
patch_norm=True,
|
||||
drop_rate=0.,
|
||||
attn_drop_rate=0.,
|
||||
drop_path_rate=0.1,
|
||||
use_abs_pos_embed=False,
|
||||
act_cfg=dict(type='GELU'),
|
||||
norm_cfg=dict(type='LN'),
|
||||
pretrain_style='official',
|
||||
pretrained=None,
|
||||
init_cfg=None):
|
||||
super(SwinTransformer, self).__init__()
|
||||
|
||||
if isinstance(pretrain_img_size, int):
|
||||
pretrain_img_size = to_2tuple(pretrain_img_size)
|
||||
elif isinstance(pretrain_img_size, tuple):
|
||||
if len(pretrain_img_size) == 1:
|
||||
pretrain_img_size = to_2tuple(pretrain_img_size[0])
|
||||
assert len(pretrain_img_size) == 2, \
|
||||
f'The size of image should have length 1 or 2, ' \
|
||||
f'but got {len(pretrain_img_size)}'
|
||||
|
||||
assert pretrain_style in ['official', 'mmcls'], 'We only support load '
|
||||
'official ckpt and mmcls ckpt.'
|
||||
|
||||
if isinstance(pretrained, str) or pretrained is None:
|
||||
warnings.warn('DeprecationWarning: pretrained is a deprecated, '
|
||||
'please use "init_cfg" instead')
|
||||
else:
|
||||
raise TypeError('pretrained must be a str or None')
|
||||
|
||||
num_layers = len(depths)
|
||||
self.out_indices = out_indices
|
||||
self.use_abs_pos_embed = use_abs_pos_embed
|
||||
self.pretrain_style = pretrain_style
|
||||
self.pretrained = pretrained
|
||||
self.init_cfg = init_cfg
|
||||
|
||||
assert strides[0] == patch_size, 'Use non-overlapping patch embed.'
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
in_channels=in_channels,
|
||||
embed_dims=embed_dims,
|
||||
conv_type='Conv2d',
|
||||
kernel_size=patch_size,
|
||||
stride=strides[0],
|
||||
norm_cfg=norm_cfg if patch_norm else None,
|
||||
init_cfg=None)
|
||||
|
||||
if self.use_abs_pos_embed:
|
||||
patch_row = pretrain_img_size[0] // patch_size
|
||||
patch_col = pretrain_img_size[1] // patch_size
|
||||
num_patches = patch_row * patch_col
|
||||
self.absolute_pos_embed = nn.Parameter(
|
||||
torch.zeros((1, num_patches, embed_dims)))
|
||||
|
||||
self.drop_after_pos = nn.Dropout(p=drop_rate)
|
||||
|
||||
# stochastic depth
|
||||
total_depth = sum(depths)
|
||||
dpr = [
|
||||
x.item() for x in torch.linspace(0, drop_path_rate, total_depth)
|
||||
] # stochastic depth decay rule
|
||||
|
||||
self.stages = ModuleList()
|
||||
in_channels = embed_dims
|
||||
for i in range(num_layers):
|
||||
if i < num_layers - 1:
|
||||
downsample = PatchMerging(
|
||||
in_channels=in_channels,
|
||||
out_channels=2 * in_channels,
|
||||
stride=strides[i + 1],
|
||||
norm_cfg=norm_cfg if patch_norm else None,
|
||||
init_cfg=None)
|
||||
else:
|
||||
downsample = None
|
||||
|
||||
stage = SwinBlockSequence(
|
||||
embed_dims=in_channels,
|
||||
num_heads=num_heads[i],
|
||||
feedforward_channels=mlp_ratio * in_channels,
|
||||
depth=depths[i],
|
||||
window_size=window_size,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale,
|
||||
drop_rate=drop_rate,
|
||||
attn_drop_rate=attn_drop_rate,
|
||||
drop_path_rate=dpr[:depths[i]],
|
||||
downsample=downsample,
|
||||
act_cfg=act_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
init_cfg=None)
|
||||
self.stages.append(stage)
|
||||
|
||||
dpr = dpr[depths[i]:]
|
||||
if downsample:
|
||||
in_channels = downsample.out_channels
|
||||
|
||||
self.num_features = [int(embed_dims * 2**i) for i in range(num_layers)]
|
||||
# Add a norm layer for each output
|
||||
for i in out_indices:
|
||||
layer = build_norm_layer(norm_cfg, self.num_features[i])[1]
|
||||
layer_name = f'norm{i}'
|
||||
self.add_module(layer_name, layer)
|
||||
|
||||
def init_weights(self):
|
||||
if self.pretrained is None:
|
||||
super().init_weights()
|
||||
if self.use_abs_pos_embed:
|
||||
trunc_normal_init(self.absolute_pos_embed, std=0.02)
|
||||
for m in self.modules():
|
||||
if isinstance(m, Linear):
|
||||
trunc_normal_init(m.weight, std=.02)
|
||||
if m.bias is not None:
|
||||
constant_init(m.bias, 0)
|
||||
elif isinstance(m, LayerNorm):
|
||||
constant_init(m.bias, 0)
|
||||
constant_init(m.weight, 1.0)
|
||||
elif isinstance(self.pretrained, str):
|
||||
logger = get_root_logger()
|
||||
ckpt = _load_checkpoint(
|
||||
self.pretrained, logger=logger, map_location='cpu')
|
||||
if 'state_dict' in ckpt:
|
||||
state_dict = ckpt['state_dict']
|
||||
elif 'model' in ckpt:
|
||||
state_dict = ckpt['model']
|
||||
else:
|
||||
state_dict = ckpt
|
||||
|
||||
if self.pretrain_style == 'official':
|
||||
state_dict = swin_convert(state_dict)
|
||||
|
||||
# strip prefix of state_dict
|
||||
if list(state_dict.keys())[0].startswith('module.'):
|
||||
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
||||
|
||||
# reshape absolute position embedding
|
||||
if state_dict.get('absolute_pos_embed') is not None:
|
||||
absolute_pos_embed = state_dict['absolute_pos_embed']
|
||||
N1, L, C1 = absolute_pos_embed.size()
|
||||
N2, C2, H, W = self.absolute_pos_embed.size()
|
||||
if N1 != N2 or C1 != C2 or L != H * W:
|
||||
logger.warning('Error in loading absolute_pos_embed, pass')
|
||||
else:
|
||||
state_dict['absolute_pos_embed'] = absolute_pos_embed.view(
|
||||
N2, H, W, C2).permute(0, 3, 1, 2).contiguous()
|
||||
|
||||
# interpolate position bias table if needed
|
||||
relative_position_bias_table_keys = [
|
||||
k for k in state_dict.keys()
|
||||
if 'relative_position_bias_table' in k
|
||||
]
|
||||
for table_key in relative_position_bias_table_keys:
|
||||
table_pretrained = state_dict[table_key]
|
||||
table_current = self.state_dict()[table_key]
|
||||
L1, nH1 = table_pretrained.size()
|
||||
L2, nH2 = table_current.size()
|
||||
if nH1 != nH2:
|
||||
logger.warning(f'Error in loading {table_key}, pass')
|
||||
else:
|
||||
if L1 != L2:
|
||||
S1 = int(L1**0.5)
|
||||
S2 = int(L2**0.5)
|
||||
table_pretrained_resized = F.interpolate(
|
||||
table_pretrained.permute(1, 0).reshape(
|
||||
1, nH1, S1, S1),
|
||||
size=(S2, S2),
|
||||
mode='bicubic')
|
||||
state_dict[table_key] = table_pretrained_resized.view(
|
||||
nH2, L2).permute(1, 0).contiguous()
|
||||
|
||||
# load state_dict
|
||||
self.load_state_dict(state_dict, False)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.patch_embed(x)
|
||||
|
||||
hw_shape = (self.patch_embed.DH, self.patch_embed.DW)
|
||||
if self.use_abs_pos_embed:
|
||||
x = x + self.absolute_pos_embed
|
||||
x = self.drop_after_pos(x)
|
||||
|
||||
outs = []
|
||||
for i, stage in enumerate(self.stages):
|
||||
x, hw_shape, out, out_hw_shape = stage(x, hw_shape)
|
||||
if i in self.out_indices:
|
||||
norm_layer = getattr(self, f'norm{i}')
|
||||
out = norm_layer(out)
|
||||
out = out.view(-1, *out_hw_shape,
|
||||
self.num_features[i]).permute(0, 3, 1,
|
||||
2).contiguous()
|
||||
outs.append(out)
|
||||
|
||||
return outs
|
|
@ -4,8 +4,8 @@ import warnings
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from mmcv.cnn import (build_conv_layer, build_norm_layer, constant_init,
|
||||
kaiming_init, normal_init, trunc_normal_init)
|
||||
from mmcv.cnn import (build_norm_layer, constant_init, kaiming_init,
|
||||
normal_init, trunc_normal_init)
|
||||
from mmcv.cnn.bricks.transformer import FFN, MultiheadAttention
|
||||
from mmcv.runner import BaseModule, ModuleList, _load_checkpoint
|
||||
from torch.nn.modules.batchnorm import _BatchNorm
|
||||
|
@ -13,7 +13,7 @@ from torch.nn.modules.utils import _pair as to_2tuple
|
|||
|
||||
from mmseg.utils import get_root_logger
|
||||
from ..builder import BACKBONES
|
||||
from ..utils import vit_convert
|
||||
from ..utils import PatchEmbed, vit_convert
|
||||
|
||||
|
||||
class TransformerEncoderLayer(BaseModule):
|
||||
|
@ -93,49 +93,6 @@ class TransformerEncoderLayer(BaseModule):
|
|||
return x
|
||||
|
||||
|
||||
# Modified from pytorch-image-models
|
||||
class PatchEmbed(BaseModule):
|
||||
"""Image to Patch Embedding.
|
||||
|
||||
Args:
|
||||
patch_size (int): The size of one patch
|
||||
in_channels (int): The num of input channels.
|
||||
embed_dims (int): The dimensions of embedding.
|
||||
norm_cfg (dict, optional): Config dict for normalization layer.
|
||||
conv_cfg (dict, optional): The config dict for conv layers.
|
||||
Default: None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
patch_size=16,
|
||||
in_channels=3,
|
||||
embed_dims=768,
|
||||
norm_cfg=None,
|
||||
conv_cfg=None):
|
||||
super(PatchEmbed, self).__init__()
|
||||
|
||||
# Use conv layer to embed
|
||||
self.projection = build_conv_layer(
|
||||
conv_cfg,
|
||||
in_channels,
|
||||
embed_dims,
|
||||
kernel_size=patch_size,
|
||||
stride=patch_size)
|
||||
|
||||
if norm_cfg is not None:
|
||||
self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
|
||||
else:
|
||||
self.norm = None
|
||||
|
||||
def forward(self, x):
|
||||
x = self.projection(x).flatten(2).transpose(1, 2)
|
||||
|
||||
if self.norm is not None:
|
||||
x = self.norm(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
@BACKBONES.register_module()
|
||||
class VisionTransformer(BaseModule):
|
||||
"""Vision Transformer.
|
||||
|
@ -248,10 +205,14 @@ class VisionTransformer(BaseModule):
|
|||
self.init_cfg = init_cfg
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
patch_size=patch_size,
|
||||
in_channels=in_channels,
|
||||
embed_dims=embed_dims,
|
||||
norm_cfg=norm_cfg if patch_norm else None)
|
||||
conv_type='Conv2d',
|
||||
kernel_size=patch_size,
|
||||
stride=patch_size,
|
||||
norm_cfg=norm_cfg if patch_norm else None,
|
||||
init_cfg=None,
|
||||
)
|
||||
|
||||
num_patches = (img_size[0] // patch_size) * \
|
||||
(img_size[1] // patch_size)
|
||||
|
|
|
@ -1,12 +1,14 @@
|
|||
from .ckpt_convert import swin_convert, vit_convert
|
||||
from .embed import PatchEmbed
|
||||
from .inverted_residual import InvertedResidual, InvertedResidualV3
|
||||
from .make_divisible import make_divisible
|
||||
from .res_layer import ResLayer
|
||||
from .se_layer import SELayer
|
||||
from .self_attention_block import SelfAttentionBlock
|
||||
from .timm_convert import vit_convert
|
||||
from .up_conv_block import UpConvBlock
|
||||
|
||||
__all__ = [
|
||||
'ResLayer', 'SelfAttentionBlock', 'make_divisible', 'InvertedResidual',
|
||||
'UpConvBlock', 'InvertedResidualV3', 'SELayer', 'vit_convert'
|
||||
'UpConvBlock', 'InvertedResidualV3', 'SELayer', 'vit_convert',
|
||||
'swin_convert', 'PatchEmbed'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,90 @@
|
|||
from collections import OrderedDict
|
||||
|
||||
|
||||
def swin_convert(ckpt):
|
||||
new_ckpt = OrderedDict()
|
||||
|
||||
def correct_unfold_reduction_order(x):
|
||||
out_channel, in_channel = x.shape
|
||||
x = x.reshape(out_channel, 4, in_channel // 4)
|
||||
x = x[:, [0, 2, 1, 3], :].transpose(1,
|
||||
2).reshape(out_channel, in_channel)
|
||||
return x
|
||||
|
||||
def correct_unfold_norm_order(x):
|
||||
in_channel = x.shape[0]
|
||||
x = x.reshape(4, in_channel // 4)
|
||||
x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel)
|
||||
return x
|
||||
|
||||
for k, v in ckpt.items():
|
||||
if k.startswith('head'):
|
||||
continue
|
||||
elif k.startswith('layers'):
|
||||
new_v = v
|
||||
if 'attn.' in k:
|
||||
new_k = k.replace('attn.', 'attn.w_msa.')
|
||||
elif 'mlp.' in k:
|
||||
if 'mlp.fc1.' in k:
|
||||
new_k = k.replace('mlp.fc1.', 'ffn.layers.0.0.')
|
||||
elif 'mlp.fc2.' in k:
|
||||
new_k = k.replace('mlp.fc2.', 'ffn.layers.1.')
|
||||
else:
|
||||
new_k = k.replace('mlp.', 'ffn.')
|
||||
elif 'downsample' in k:
|
||||
new_k = k
|
||||
if 'reduction.' in k:
|
||||
new_v = correct_unfold_reduction_order(v)
|
||||
elif 'norm.' in k:
|
||||
new_v = correct_unfold_norm_order(v)
|
||||
else:
|
||||
new_k = k
|
||||
new_k = new_k.replace('layers', 'stages', 1)
|
||||
elif k.startswith('patch_embed'):
|
||||
new_v = v
|
||||
if 'proj' in k:
|
||||
new_k = k.replace('proj', 'projection')
|
||||
else:
|
||||
new_k = k
|
||||
else:
|
||||
new_v = v
|
||||
new_k = k
|
||||
|
||||
new_ckpt[new_k] = new_v
|
||||
|
||||
return new_ckpt
|
||||
|
||||
|
||||
def vit_convert(ckpt):
|
||||
|
||||
new_ckpt = OrderedDict()
|
||||
|
||||
for k, v in ckpt.items():
|
||||
if k.startswith('head'):
|
||||
continue
|
||||
if k.startswith('norm'):
|
||||
new_k = k.replace('norm.', 'ln1.')
|
||||
elif k.startswith('patch_embed'):
|
||||
if 'proj' in k:
|
||||
new_k = k.replace('proj', 'projection')
|
||||
else:
|
||||
new_k = k
|
||||
elif k.startswith('blocks'):
|
||||
if 'norm' in k:
|
||||
new_k = k.replace('norm', 'ln')
|
||||
elif 'mlp.fc1' in k:
|
||||
new_k = k.replace('mlp.fc1', 'ffn.layers.0.0')
|
||||
elif 'mlp.fc2' in k:
|
||||
new_k = k.replace('mlp.fc2', 'ffn.layers.1')
|
||||
elif 'attn.qkv' in k:
|
||||
new_k = k.replace('attn.qkv.', 'attn.attn.in_proj_')
|
||||
elif 'attn.proj' in k:
|
||||
new_k = k.replace('attn.proj', 'attn.attn.out_proj')
|
||||
else:
|
||||
new_k = k
|
||||
new_k = new_k.replace('blocks.', 'layers.')
|
||||
else:
|
||||
new_k = k
|
||||
new_ckpt[new_k] = v
|
||||
|
||||
return new_ckpt
|
|
@ -0,0 +1,89 @@
|
|||
import torch.nn.functional as F
|
||||
from mmcv.cnn import build_conv_layer, build_norm_layer
|
||||
from mmcv.runner.base_module import BaseModule
|
||||
from torch.nn.modules.utils import _pair as to_2tuple
|
||||
|
||||
|
||||
# Modified from Pytorch-Image-Models
|
||||
class PatchEmbed(BaseModule):
|
||||
"""Image to Patch Embedding V2.
|
||||
|
||||
We use a conv layer to implement PatchEmbed.
|
||||
Args:
|
||||
in_channels (int): The num of input channels. Default: 3
|
||||
embed_dims (int): The dimensions of embedding. Default: 768
|
||||
conv_type (dict, optional): The config dict for conv layers type
|
||||
selection. Default: None.
|
||||
kernel_size (int): The kernel_size of embedding conv. Default: 16.
|
||||
stride (int): The slide stride of embedding conv.
|
||||
Default: None (Default to be equal with kernel_size).
|
||||
padding (int): The padding length of embedding conv. Default: 0.
|
||||
dilation (int): The dilation rate of embedding conv. Default: 1.
|
||||
norm_cfg (dict, optional): Config dict for normalization layer.
|
||||
init_cfg (`mmcv.ConfigDict`, optional): The Config for initialization.
|
||||
Default: None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels=3,
|
||||
embed_dims=768,
|
||||
conv_type=None,
|
||||
kernel_size=16,
|
||||
stride=16,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
norm_cfg=None,
|
||||
init_cfg=None):
|
||||
super(PatchEmbed, self).__init__()
|
||||
|
||||
self.embed_dims = embed_dims
|
||||
self.init_cfg = init_cfg
|
||||
|
||||
if stride is None:
|
||||
stride = kernel_size
|
||||
|
||||
# The default setting of patch size is eaual to kernel size.
|
||||
patch_size = kernel_size
|
||||
if isinstance(patch_size, int):
|
||||
patch_size = to_2tuple(patch_size)
|
||||
elif isinstance(patch_size, tuple):
|
||||
if len(patch_size) == 1:
|
||||
patch_size = to_2tuple(patch_size[0])
|
||||
assert len(patch_size) == 2, \
|
||||
f'The size of patch should have length 1 or 2, ' \
|
||||
f'but got {len(patch_size)}'
|
||||
|
||||
self.patch_size = patch_size
|
||||
|
||||
# Use conv layer to embed
|
||||
conv_type = conv_type or dict(type='Conv2d')
|
||||
self.projection = build_conv_layer(
|
||||
dict(type=conv_type),
|
||||
in_channels=in_channels,
|
||||
out_channels=embed_dims,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation)
|
||||
|
||||
if norm_cfg is not None:
|
||||
self.norm = build_norm_layer(norm_cfg, embed_dims)[1]
|
||||
else:
|
||||
self.norm = None
|
||||
|
||||
def forward(self, x):
|
||||
H, W = x.shape[2], x.shape[3]
|
||||
if H % self.patch_size[0] != 0:
|
||||
x = F.pad(x,
|
||||
(0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
||||
if W % self.patch_size[1] != 0:
|
||||
x = F.pad(x,
|
||||
(0, self.patch_size[1] - W % self.patch_size[1], 0, 0))
|
||||
x = self.projection(x)
|
||||
self.DH, self.DW = x.shape[2], x.shape[3]
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
|
||||
if self.norm is not None:
|
||||
x = self.norm(x)
|
||||
|
||||
return x
|
|
@ -1,32 +0,0 @@
|
|||
from collections import OrderedDict
|
||||
|
||||
|
||||
def vit_convert(timm_dict):
|
||||
|
||||
mmseg_dict = OrderedDict()
|
||||
|
||||
for k, v in timm_dict.items():
|
||||
if k.startswith('head'):
|
||||
continue
|
||||
if k.startswith('norm'):
|
||||
new_k = k.replace('norm.', 'ln1.')
|
||||
elif k.startswith('patch_embed'):
|
||||
if 'proj' in k:
|
||||
new_k = k.replace('proj', 'projection')
|
||||
elif k.startswith('blocks'):
|
||||
new_k = k.replace('blocks.', 'layers.')
|
||||
if 'norm' in new_k:
|
||||
new_k = new_k.replace('norm', 'ln')
|
||||
elif 'mlp.fc1' in new_k:
|
||||
new_k = new_k.replace('mlp.fc1', 'ffn.layers.0.0')
|
||||
elif 'mlp.fc2' in new_k:
|
||||
new_k = new_k.replace('mlp.fc2', 'ffn.layers.1')
|
||||
elif 'attn.qkv' in new_k:
|
||||
new_k = new_k.replace('attn.qkv.', 'attn.attn.in_proj_')
|
||||
elif 'attn.proj' in new_k:
|
||||
new_k = new_k.replace('attn.proj', 'attn.attn.out_proj')
|
||||
else:
|
||||
new_k = k
|
||||
mmseg_dict[new_k] = v
|
||||
|
||||
return mmseg_dict
|
|
@ -0,0 +1,64 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
from mmseg.models.backbones import SwinTransformer
|
||||
|
||||
|
||||
def test_swin_transformer():
|
||||
"""Test Swin Transformer backbone."""
|
||||
|
||||
with pytest.raises(AssertionError):
|
||||
# We only support 'official' or 'mmcls' for this arg.
|
||||
model = SwinTransformer(pretrain_style='swin')
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
# Pretrained arg must be str or None.
|
||||
model = SwinTransformer(pretrained=123)
|
||||
|
||||
with pytest.raises(AssertionError):
|
||||
# Because swin use non-overlapping patch embed, so the stride of patch
|
||||
# embed must be equal to patch size.
|
||||
model = SwinTransformer(strides=(2, 2, 2, 2), patch_size=4)
|
||||
|
||||
# Test absolute position embedding
|
||||
temp = torch.randn((1, 3, 224, 224))
|
||||
model = SwinTransformer(pretrain_img_size=224, use_abs_pos_embed=True)
|
||||
model.init_weights()
|
||||
model(temp)
|
||||
|
||||
# Test patch norm
|
||||
model = SwinTransformer(patch_norm=False)
|
||||
model(temp)
|
||||
|
||||
# Test pretrain img size
|
||||
model = SwinTransformer(pretrain_img_size=(224, ))
|
||||
|
||||
with pytest.raises(AssertionError):
|
||||
model = SwinTransformer(pretrain_img_size=(224, 224, 224))
|
||||
|
||||
# Test normal inference
|
||||
temp = torch.randn((1, 3, 512, 512))
|
||||
model = SwinTransformer()
|
||||
outs = model(temp)
|
||||
assert outs[0].shape == (1, 96, 128, 128)
|
||||
assert outs[1].shape == (1, 192, 64, 64)
|
||||
assert outs[2].shape == (1, 384, 32, 32)
|
||||
assert outs[3].shape == (1, 768, 16, 16)
|
||||
|
||||
# Test abnormal inference
|
||||
temp = torch.randn((1, 3, 511, 511))
|
||||
model = SwinTransformer()
|
||||
outs = model(temp)
|
||||
assert outs[0].shape == (1, 96, 128, 128)
|
||||
assert outs[1].shape == (1, 192, 64, 64)
|
||||
assert outs[2].shape == (1, 384, 32, 32)
|
||||
assert outs[3].shape == (1, 768, 16, 16)
|
||||
|
||||
# Test abnormal inference
|
||||
temp = torch.randn((1, 3, 112, 137))
|
||||
model = SwinTransformer()
|
||||
outs = model(temp)
|
||||
assert outs[0].shape == (1, 96, 28, 35)
|
||||
assert outs[1].shape == (1, 192, 14, 18)
|
||||
assert outs[2].shape == (1, 384, 7, 9)
|
||||
assert outs[3].shape == (1, 768, 4, 5)
|
|
@ -24,7 +24,7 @@ def test_vit_backbone():
|
|||
x = torch.randn(1, 196)
|
||||
VisionTransformer.resize_pos_embed(x, 512, 512, 224, 224, 'bilinear')
|
||||
|
||||
with pytest.raises(RuntimeError):
|
||||
with pytest.raises(IndexError):
|
||||
# forward inputs must be [N, C, H, W]
|
||||
x = torch.randn(3, 30, 30)
|
||||
model = VisionTransformer()
|
||||
|
|
Loading…
Reference in New Issue