Bump v0.21.0 (#1258)

* change version to v0.21.0

* change version to v0.21.0

* change version to v0.21.0

* change version to v0.21.0
pull/1263/head v0.21.0
MengzhangLI 2022-01-29 18:30:13 +08:00 committed by GitHub
parent ecda117ea5
commit 29cfcd145c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 84 additions and 44 deletions

View File

@ -66,7 +66,7 @@ This project is released under the [Apache 2.0 license](LICENSE).
## Changelog
v0.20.2 was released in 12/15/2021.
v0.21.0 was released in 1/29/2022.
Please refer to [changelog.md](docs/en/changelog.md) for details and release history.
## Benchmark and model zoo

View File

@ -65,7 +65,7 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
## 更新日志
最新的月度版本 v0.20.2 在 2021.12.15 发布。
最新的月度版本 v0.21.0 在 2022.1.29 发布。
如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/en/changelog.md)。
## 基准测试和模型库

View File

@ -3,8 +3,8 @@ ARG CUDA="10.1"
ARG CUDNN="7"
FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
ARG MMCV="1.3.13"
ARG MMSEG="0.20.0"
ARG MMCV="1.4.4"
ARG MMSEG="0.21.0"
ENV PYTHONUNBUFFERED TRUE

View File

@ -1,6 +1,44 @@
## Changelog
### V0.21 (1/29/2022)
**Highlights**
- Officially Support CPUs training and inference, please use the latest MMCV (1.4.4) to try it out.
- Support Segmenter: Transformer for Semantic Segmentation (ICCV'2021).
- Support ISPRS Potsdam and Vaihingen Dataset.
- Add Mosaic transform and `MultiImageMixDataset` class in `dataset_wrappers`.
**New Features**
- Support Segmenter: Transformer for Semantic Segmentation (ICCV'2021) ([#955](https://github.com/open-mmlab/mmsegmentation/pull/955))
- Support ISPRS Potsdam and Vaihingen Dataset ([#1097](https://github.com/open-mmlab/mmsegmentation/pull/1097), [#1171](https://github.com/open-mmlab/mmsegmentation/pull/1171))
- Add segformers benchmark on cityscapes ([#1155](https://github.com/open-mmlab/mmsegmentation/pull/1155))
- Add auto resume ([#1172](https://github.com/open-mmlab/mmsegmentation/pull/1172))
- Add Mosaic transform and `MultiImageMixDataset` class in `dataset_wrappers` ([#1093](https://github.com/open-mmlab/mmsegmentation/pull/1093), [#1105](https://github.com/open-mmlab/mmsegmentation/pull/1105))
- Add log collector ([#1175](https://github.com/open-mmlab/mmsegmentation/pull/1175))
**Improvements**
- New-style CPU training and inference ([#1251](https://github.com/open-mmlab/mmsegmentation/pull/1251))
- Add UNet benchmark with multiple losses supervision ([#1143](https://github.com/open-mmlab/mmsegmentation/pull/1143))
**Bug Fixes**
- Fix the model statistics in doc for readthedoc ([#1153](https://github.com/open-mmlab/mmsegmentation/pull/1153))
- Set random seed for `palette` if not given ([#1152](https://github.com/open-mmlab/mmsegmentation/pull/1152))
- Add `COCOStuffDataset` in `class_names.py` ([#1222](https://github.com/open-mmlab/mmsegmentation/pull/1222))
- Fix bug in non-distributed multi-gpu training/testing ([#1247](https://github.com/open-mmlab/mmsegmentation/pull/1247))
- Delete unnecessary lines of STDCHead ([#1231](https://github.com/open-mmlab/mmsegmentation/pull/1231))
**Contributors**
- @jbwang1997 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1152
- @BeaverCC made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1206
- @Echo-minn made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1214
- @rstrudel made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/955
### V0.20.2 (12/15/2021)
**Bug Fixes**
@ -53,7 +91,7 @@
**Bug Fixes**
- Fix incorrectly loading init_cfg or pretrained models of several transformer models ([#999](https://github.com/open-mmlab/mmsegmentation/pull/999), [#1069](https://github.com/open-mmlab/mmsegmentation/pull/1069), [#1102](https://github.com/open-mmlab/mmsegmentation/pull/1102))
- Fix EfficientMultiheadAttention in SegFormer ([#1003](https://github.com/open-mmlab/mmsegmentation/pull/1037))
- Fix EfficientMultiheadAttention in SegFormer ([#1037](https://github.com/open-mmlab/mmsegmentation/pull/1037))
- Remove `fp16` folder in `configs` ([#1031](https://github.com/open-mmlab/mmsegmentation/pull/1031))
- Fix several typos in .yml file (Dice Metric [#1041](https://github.com/open-mmlab/mmsegmentation/pull/1041), ADE20K dataset [#1120](https://github.com/open-mmlab/mmsegmentation/pull/1120), Training Memory (GB) [#1083](https://github.com/open-mmlab/mmsegmentation/pull/1083))
- Fix test error when using `--show-dir` ([#1091](https://github.com/open-mmlab/mmsegmentation/pull/1091))

View File

@ -9,25 +9,26 @@
The compatible MMSegmentation and MMCV versions are as below. Please install the correct version of MMCV to avoid installation issues.
| MMSegmentation version | MMCV version |
|:-------------------:|:-------------------:|
| master | mmcv-full>=1.3.13, <1.5.0 |
| 0.20.0 | mmcv-full>=1.3.13, <1.5.0 |
| 0.19.0 | mmcv-full>=1.3.13, <1.4.0 |
| 0.18.0 | mmcv-full>=1.3.13, <1.4.0 |
| 0.17.0 | mmcv-full>=1.3.7, <1.4.0 |
| 0.16.0 | mmcv-full>=1.3.7, <1.4.0 |
| 0.15.0 | mmcv-full>=1.3.7, <1.4.0 |
| 0.14.1 | mmcv-full>=1.3.7, <1.4.0 |
| 0.14.0 | mmcv-full>=1.3.1, <1.3.2 |
| 0.13.0 | mmcv-full>=1.3.1, <1.3.2 |
| 0.12.0 | mmcv-full>=1.1.4, <1.3.2 |
| 0.11.0 | mmcv-full>=1.1.4, <1.3.0 |
| 0.10.0 | mmcv-full>=1.1.4, <1.3.0 |
| 0.9.0 | mmcv-full>=1.1.4, <1.3.0 |
| 0.8.0 | mmcv-full>=1.1.4, <1.2.0 |
| 0.7.0 | mmcv-full>=1.1.2, <1.2.0 |
| 0.6.0 | mmcv-full>=1.1.2, <1.2.0 |
| MMSegmentation version | MMCV version |
|:----------------------:|:--------------------------:|
| master | mmcv-full>=1.4.4, <1.5.0 |
| 0.21.0 | mmcv-full>=1.4.4, <1.5.0 |
| 0.20.0 | mmcv-full>=1.3.13, <1.5.0 |
| 0.19.0 | mmcv-full>=1.3.13, <1.3.17 |
| 0.18.0 | mmcv-full>=1.3.13, <1.3.17 |
| 0.17.0 | mmcv-full>=1.3.7, <1.3.17 |
| 0.16.0 | mmcv-full>=1.3.7, <1.3.17 |
| 0.15.0 | mmcv-full>=1.3.7, <1.3.17 |
| 0.14.1 | mmcv-full>=1.3.7, <1.3.17 |
| 0.14.0 | mmcv-full>=1.3.1, <1.3.2 |
| 0.13.0 | mmcv-full>=1.3.1, <1.3.2 |
| 0.12.0 | mmcv-full>=1.1.4, <1.3.2 |
| 0.11.0 | mmcv-full>=1.1.4, <1.3.0 |
| 0.10.0 | mmcv-full>=1.1.4, <1.3.0 |
| 0.9.0 | mmcv-full>=1.1.4, <1.3.0 |
| 0.8.0 | mmcv-full>=1.1.4, <1.2.0 |
| 0.7.0 | mmcv-full>=1.1.2, <1.2.0 |
| 0.6.0 | mmcv-full>=1.1.2, <1.2.0 |
:::{note}
You need to run `pip uninstall mmcv` first if you have mmcv installed.

View File

@ -9,25 +9,26 @@
可编译的 MMSegmentation 和 MMCV 版本如下所示,请对照对应版本安装以避免安装问题。
| MMSegmentation 版本 | MMCV 版本 |
|:-------------------:|:-------------------:|
| master | mmcv-full>=1.3.13, <1.5.0 |
| 0.20.0 | mmcv-full>=1.3.13, <1.5.0 |
| 0.19.0 | mmcv-full>=1.3.13, <1.4.0 |
| 0.18.0 | mmcv-full>=1.3.13, <1.4.0 |
| 0.17.0 | mmcv-full>=1.3.7, <1.4.0 |
| 0.16.0 | mmcv-full>=1.3.7, <1.4.0 |
| 0.15.0 | mmcv-full>=1.3.7, <1.4.0 |
| 0.14.1 | mmcv-full>=1.3.7, <1.4.0 |
| 0.14.0 | mmcv-full>=1.3.1, <1.4.0 |
| 0.13.0 | mmcv-full>=1.3.1, <1.4.0 |
| 0.12.0 | mmcv-full>=1.1.4, <1.4.0 |
| 0.11.0 | mmcv-full>=1.1.4, <1.3.0 |
| 0.10.0 | mmcv-full>=1.1.4, <1.3.0 |
| 0.9.0 | mmcv-full>=1.1.4, <1.3.0 |
| 0.8.0 | mmcv-full>=1.1.4, <1.2.0 |
| 0.7.0 | mmcv-full>=1.1.2, <1.2.0 |
| 0.6.0 | mmcv-full>=1.1.2, <1.2.0 |
| MMSegmentation 版本 | MMCV 版本 |
|:-----------------:|:--------------------------:|
| master | mmcv-full>=1.4.4, <1.5.0 |
| 0.21.0 | mmcv-full>=1.4.4, <1.5.0 |
| 0.20.0 | mmcv-full>=1.3.13, <1.5.0 |
| 0.19.0 | mmcv-full>=1.3.13, <1.3.17 |
| 0.18.0 | mmcv-full>=1.3.13, <1.3.17 |
| 0.17.0 | mmcv-full>=1.3.7, <1.3.17 |
| 0.16.0 | mmcv-full>=1.3.7, <1.3.17 |
| 0.15.0 | mmcv-full>=1.3.7, <1.3.17 |
| 0.14.1 | mmcv-full>=1.3.7, <1.3.17 |
| 0.14.0 | mmcv-full>=1.3.1, <1.3.2 |
| 0.13.0 | mmcv-full>=1.3.1, <1.3.2 |
| 0.12.0 | mmcv-full>=1.1.4, <1.3.2 |
| 0.11.0 | mmcv-full>=1.1.4, <1.3.0 |
| 0.10.0 | mmcv-full>=1.1.4, <1.3.0 |
| 0.9.0 | mmcv-full>=1.1.4, <1.3.0 |
| 0.8.0 | mmcv-full>=1.1.4, <1.2.0 |
| 0.7.0 | mmcv-full>=1.1.2, <1.2.0 |
| 0.6.0 | mmcv-full>=1.1.2, <1.2.0 |
注意: 如果您已经安装好 mmcv 您首先需要运行 `pip uninstall mmcv`
如果 mmcv 和 mmcv-full 同时被安装,会报错 `ModuleNotFoundError`

View File

@ -1,6 +1,6 @@
# Copyright (c) Open-MMLab. All rights reserved.
__version__ = '0.20.2'
__version__ = '0.21.0'
def parse_version_info(version_str):