From 2bf70c58d70233164fd97f76f3f7c1c8e675b8dc Mon Sep 17 00:00:00 2001 From: johnzja Date: Thu, 6 Aug 2020 12:35:32 +0800 Subject: [PATCH] lr0.08_100k --- .../fast_scnn_4x8_100k_lr0.08_cityscapes.py | 61 +++++++++++++++++++ 1 file changed, 61 insertions(+) create mode 100644 configs_unify/fastscnn/fast_scnn_4x8_100k_lr0.08_cityscapes.py diff --git a/configs_unify/fastscnn/fast_scnn_4x8_100k_lr0.08_cityscapes.py b/configs_unify/fastscnn/fast_scnn_4x8_100k_lr0.08_cityscapes.py new file mode 100644 index 000000000..dac8151f9 --- /dev/null +++ b/configs_unify/fastscnn/fast_scnn_4x8_100k_lr0.08_cityscapes.py @@ -0,0 +1,61 @@ +_base_ = [ + '../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py', + '../_base_/default_runtime.py' +] +crop_size = (512, 1024) +cudnn_benchmark = True +# model training and testing settings +train_cfg = dict() +test_cfg = dict(mode='whole') + +# Here: What is parameter 'with_seg'? +img_norm_cfg = dict( + mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) +train_pipeline = [ + dict(type='LoadImageFromFile', to_float32=True), + dict(type='LoadAnnotations'), # with_seg=True + dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), + dict(type='RandomFlip', flip_ratio=0.5), + dict(type='PhotoMetricDistortion'), + dict(type='Normalize', **img_norm_cfg), + dict(type='RandomCrop', crop_size=crop_size), + dict(type='DefaultFormatBundle'), + dict(type='Collect', keys=['img', 'gt_semantic_seg']), +] +test_pipeline = [ + dict(type='LoadImageFromFile'), + dict( + type='MultiScaleFlipAug', + img_scale=(2048, 1024), + # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], + flip=False, + transforms=[ + dict(type='Resize', keep_ratio=True), + dict(type='RandomFlip'), + dict(type='Normalize', **img_norm_cfg), + dict(type='ImageToTensor', keys=['img']), + dict(type='Collect', keys=['img']), + ]) +] +data = dict( + samples_per_gpu=8, + workers_per_gpu=4, + train=dict(pipeline=train_pipeline), + val=dict(pipeline=test_pipeline), + test=dict(pipeline=test_pipeline)) + +# optimizer +optimizer = dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=4e-5) +optimizer_config = dict() +# learning policy +lr_config = dict( + policy='poly', + power=0.9, + by_epoch=False, +) +# runtime settings +# total_epochs = 1000 +total_iters = 100000 +evaluation = dict(interval=5000, metric='mIoU') +checkpoint_config = dict(interval=5000) +