Merge branch 'add_fast_scnn' of github.com:johnzja/mmsegmentation into add_fast_scnn
On sensetime servers, I modified the config files. On my PC, I modified collect_env.py. Now I'm going to merge these two modifications.pull/58/head
commit
2e43bae61f
|
@ -114,10 +114,11 @@ data
|
|||
*.log.json
|
||||
work_dirs/
|
||||
workdirs/
|
||||
configs_unify/
|
||||
results/
|
||||
|
||||
# Pytorch
|
||||
*.pth
|
||||
|
||||
# Nohup out file
|
||||
*.file
|
||||
|
||||
|
||||
|
|
|
@ -55,7 +55,7 @@ lr_config = dict(
|
|||
)
|
||||
# runtime settings
|
||||
# total_epochs = 1000
|
||||
total_iters = 247917
|
||||
evaluation = dict(interval=100, metric='mIoU')
|
||||
checkpoint_config = dict(interval=100)
|
||||
total_iters = 247000
|
||||
evaluation = dict(interval=1000, metric='mIoU')
|
||||
checkpoint_config = dict(interval=1000)
|
||||
|
||||
|
|
|
@ -0,0 +1,61 @@
|
|||
_base_ = [
|
||||
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
||||
crop_size = (512, 1024)
|
||||
cudnn_benchmark = True
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='whole')
|
||||
|
||||
# Here: What is parameter 'with_seg'?
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', to_float32=True),
|
||||
dict(type='LoadAnnotations'), # with_seg=True
|
||||
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
||||
dict(type='RandomFlip', flip_ratio=0.5),
|
||||
dict(type='PhotoMetricDistortion'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='RandomCrop', crop_size=crop_size),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(2048, 1024),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img']),
|
||||
])
|
||||
]
|
||||
data = dict(
|
||||
samples_per_gpu=8,
|
||||
workers_per_gpu=4,
|
||||
train=dict(pipeline=train_pipeline),
|
||||
val=dict(pipeline=test_pipeline),
|
||||
test=dict(pipeline=test_pipeline))
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=4e-5)
|
||||
optimizer_config = dict()
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
policy='poly',
|
||||
power=0.9,
|
||||
by_epoch=False,
|
||||
)
|
||||
# runtime settings
|
||||
# total_epochs = 1000
|
||||
total_iters = 80000
|
||||
evaluation = dict(interval=8000, metric='mIoU')
|
||||
checkpoint_config = dict(interval=8000)
|
||||
|
|
@ -0,0 +1,52 @@
|
|||
# dataset settings
|
||||
dataset_type = 'ADEDataset'
|
||||
data_root = 'data/ade/ADEChallengeData2016'
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
crop_size = (521, 521)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations', with_seg=True),
|
||||
dict(type='Resize', img_scale=(2049, 521), ratio_range=(0.5, 2.0)),
|
||||
dict(type='RandomFlip', flip_ratio=0.5),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='RandomCrop', crop_size=crop_size),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(2049, 521),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img']),
|
||||
])
|
||||
]
|
||||
data = dict(
|
||||
samples_per_gpu=2,
|
||||
workers_per_gpu=2,
|
||||
train=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='images/training',
|
||||
ann_dir='annotations/training',
|
||||
train_pipeline=train_pipeline),
|
||||
val=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='images/validation',
|
||||
ann_dir='annotations/validation',
|
||||
test_pipeline=test_pipeline),
|
||||
test=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='images/validation',
|
||||
ann_dir='annotations/validation',
|
||||
test_pipeline=test_pipeline))
|
|
@ -0,0 +1,56 @@
|
|||
# dataset settings
|
||||
dataset_type = 'CityscapesDataset'
|
||||
data_root = 'data/cityscapes/'
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
crop_size = (769, 769)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations'),
|
||||
dict(type='Resize', img_scale=(2049, 1025), ratio_range=(0.5, 2.0)),
|
||||
dict(type='RandomFlip', flip_ratio=0.5),
|
||||
dict(type='PhotoMetricDistortion'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(2049, 1025),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img']),
|
||||
])
|
||||
]
|
||||
data = dict(
|
||||
samples_per_gpu=2,
|
||||
workers_per_gpu=2,
|
||||
train=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='leftImg8bit/train',
|
||||
ann_dir='gtFine/train',
|
||||
split='splits/train.txt',
|
||||
pipeline=train_pipeline),
|
||||
val=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='leftImg8bit/val',
|
||||
ann_dir='gtFine/val',
|
||||
split='splits/val.txt',
|
||||
pipeline=test_pipeline),
|
||||
test=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='leftImg8bit/val',
|
||||
ann_dir='gtFine/val',
|
||||
split='splits/val.txt',
|
||||
pipeline=test_pipeline))
|
|
@ -0,0 +1,24 @@
|
|||
# dataset settings
|
||||
dataset_type = 'PascalContextDataset'
|
||||
data_root = 'data/VOCdevkit/VOC2010'
|
||||
data = dict(
|
||||
samples_per_gpu=2,
|
||||
workers_per_gpu=2,
|
||||
train=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='JPEGImages',
|
||||
ann_dir='SegmentationClassContext',
|
||||
split='ImageSets/SegmentationContext/train.txt'),
|
||||
val=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='JPEGImages',
|
||||
ann_dir='SegmentationClassContext',
|
||||
split='ImageSets/SegmentationContext/val.txt'),
|
||||
test=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='JPEGImages',
|
||||
ann_dir='SegmentationClassContext',
|
||||
split='ImageSets/SegmentationContext/val.txt'))
|
|
@ -0,0 +1,55 @@
|
|||
# dataset settings
|
||||
dataset_type = 'PascalVOCDataset'
|
||||
data_root = 'data/VOCdevkit/VOC2012'
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
crop_size = (521, 521)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations', with_seg=True),
|
||||
dict(type='Resize', img_scale=(2049, 521), ratio_range=(0.5, 2.0)),
|
||||
dict(type='RandomFlip', flip_ratio=0.5),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='RandomCrop', crop_size=crop_size),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(2049, 521),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img']),
|
||||
])
|
||||
]
|
||||
data = dict(
|
||||
samples_per_gpu=2,
|
||||
workers_per_gpu=2,
|
||||
train=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='JPEGImages',
|
||||
ann_dir='SegmentationClass',
|
||||
split='ImageSets/Segmentation/train.txt',
|
||||
pipeline=train_pipeline),
|
||||
val=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='JPEGImages',
|
||||
ann_dir='SegmentationClass',
|
||||
split='ImageSets/Segmentation/val.txt',
|
||||
pipeline=test_pipeline),
|
||||
test=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='JPEGImages',
|
||||
ann_dir='SegmentationClass',
|
||||
split='ImageSets/Segmentation/val.txt',
|
||||
pipeline=test_pipeline))
|
|
@ -0,0 +1,9 @@
|
|||
_base_ = './pascal_voc12.py'
|
||||
# dataset settings
|
||||
data = dict(
|
||||
train=dict(
|
||||
ann_dir=['SegmentationClass', 'SegmentationClassAug'],
|
||||
split=[
|
||||
'ImageSets/Segmentation/train.txt',
|
||||
'ImageSets/Segmentation/aug.txt'
|
||||
]))
|
|
@ -0,0 +1,14 @@
|
|||
# yapf:disable
|
||||
log_config = dict(
|
||||
interval=50,
|
||||
hooks=[
|
||||
dict(type='TextLoggerHook'),
|
||||
# dict(type='TensorboardLoggerHook')
|
||||
])
|
||||
# yapf:enable
|
||||
dist_params = dict(backend='nccl')
|
||||
log_level = 'INFO'
|
||||
load_from = None
|
||||
resume_from = None
|
||||
workflow = [('train', 1)]
|
||||
cudnn_benchmark = True
|
|
@ -0,0 +1,44 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||
backbone=dict(
|
||||
type='ResNetV1c',
|
||||
depth=50,
|
||||
num_stages=4,
|
||||
out_indices=(0, 1, 2, 3),
|
||||
dilations=(1, 1, 2, 4),
|
||||
strides=(1, 2, 1, 1),
|
||||
norm_cfg=norm_cfg,
|
||||
norm_eval=False,
|
||||
style='pytorch',
|
||||
contract_dilation=True),
|
||||
decode_head=dict(
|
||||
type='ANNHead',
|
||||
in_channels=[1024, 2048],
|
||||
in_index=[2, 3],
|
||||
channels=512,
|
||||
project_channels=256,
|
||||
query_scales=(1, ),
|
||||
key_pool_scales=(1, 3, 6, 8),
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
auxiliary_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=1024,
|
||||
in_index=2,
|
||||
channels=256,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
|
@ -0,0 +1,42 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||
backbone=dict(
|
||||
type='ResNetV1c',
|
||||
depth=50,
|
||||
num_stages=4,
|
||||
out_indices=(0, 1, 2, 3),
|
||||
dilations=(1, 1, 2, 4),
|
||||
strides=(1, 2, 1, 1),
|
||||
norm_cfg=norm_cfg,
|
||||
norm_eval=False,
|
||||
style='pytorch',
|
||||
contract_dilation=True),
|
||||
decode_head=dict(
|
||||
type='CCHead',
|
||||
in_channels=2048,
|
||||
in_index=3,
|
||||
channels=512,
|
||||
recurrence=2,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
auxiliary_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=1024,
|
||||
in_index=2,
|
||||
channels=256,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
|
@ -0,0 +1,42 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||
backbone=dict(
|
||||
type='ResNetV1c',
|
||||
depth=50,
|
||||
num_stages=4,
|
||||
out_indices=(0, 1, 2, 3),
|
||||
dilations=(1, 1, 2, 4),
|
||||
strides=(1, 2, 1, 1),
|
||||
norm_cfg=norm_cfg,
|
||||
norm_eval=False,
|
||||
style='pytorch',
|
||||
contract_dilation=True),
|
||||
decode_head=dict(
|
||||
type='DAHead',
|
||||
in_channels=2048,
|
||||
in_index=3,
|
||||
channels=512,
|
||||
pam_channels=64,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
auxiliary_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=1024,
|
||||
in_index=2,
|
||||
channels=256,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
|
@ -0,0 +1,42 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||
backbone=dict(
|
||||
type='ResNetV1c',
|
||||
depth=50,
|
||||
num_stages=4,
|
||||
out_indices=(0, 1, 2, 3),
|
||||
dilations=(1, 1, 2, 4),
|
||||
strides=(1, 2, 1, 1),
|
||||
norm_cfg=norm_cfg,
|
||||
norm_eval=False,
|
||||
style='pytorch',
|
||||
contract_dilation=True),
|
||||
decode_head=dict(
|
||||
type='ASPPHead',
|
||||
in_channels=2048,
|
||||
in_index=3,
|
||||
channels=512,
|
||||
dilations=(1, 12, 24, 36),
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
auxiliary_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=1024,
|
||||
in_index=2,
|
||||
channels=256,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
|
@ -0,0 +1,44 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||
backbone=dict(
|
||||
type='ResNetV1c',
|
||||
depth=50,
|
||||
num_stages=4,
|
||||
out_indices=(0, 1, 2, 3),
|
||||
dilations=(1, 1, 2, 4),
|
||||
strides=(1, 2, 1, 1),
|
||||
norm_cfg=norm_cfg,
|
||||
norm_eval=False,
|
||||
style='pytorch',
|
||||
contract_dilation=True),
|
||||
decode_head=dict(
|
||||
type='SepASPPHead',
|
||||
in_channels=2048,
|
||||
in_index=3,
|
||||
channels=512,
|
||||
dilations=(1, 12, 24, 36),
|
||||
c1_in_channels=256,
|
||||
c1_channels=48,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
auxiliary_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=1024,
|
||||
in_index=2,
|
||||
channels=256,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
|
@ -0,0 +1,57 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
backbone=dict(
|
||||
type='FastSCNN',
|
||||
downsample_dw_channels1=32,
|
||||
downsample_dw_channels2=48,
|
||||
global_in_channels=64,
|
||||
global_block_channels=(64, 96, 128),
|
||||
global_out_channels=128,
|
||||
higher_in_channels=64,
|
||||
lower_in_channels=128,
|
||||
fusion_out_channels=128,
|
||||
scale_factor=4,
|
||||
out_indices=(0, 1, 2),
|
||||
norm_cfg=norm_cfg,
|
||||
align_corners=False),
|
||||
decode_head=dict(
|
||||
type='SepFCNHead',
|
||||
in_channels=128,
|
||||
channels=128,
|
||||
concat_input=False,
|
||||
num_classes=19,
|
||||
in_index=-1,
|
||||
norm_cfg=norm_cfg,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.)),
|
||||
auxiliary_head=[
|
||||
dict(
|
||||
type='FCNHead',
|
||||
in_channels=128,
|
||||
channels=32,
|
||||
num_convs=1,
|
||||
num_classes=19,
|
||||
in_index=-2,
|
||||
norm_cfg=norm_cfg,
|
||||
concat_input=False,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||||
dict(
|
||||
type='FCNHead',
|
||||
in_channels=64,
|
||||
channels=32,
|
||||
num_convs=1,
|
||||
num_classes=19,
|
||||
in_index=-3,
|
||||
norm_cfg=norm_cfg,
|
||||
concat_input=False,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||||
])
|
||||
|
||||
total_iters = 10000
|
|
@ -0,0 +1,49 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained='open-mmlab://msra/hrnetv2_w18',
|
||||
backbone=dict(
|
||||
type='HRNet',
|
||||
norm_cfg=norm_cfg,
|
||||
norm_eval=False,
|
||||
extra=dict(
|
||||
stage1=dict(
|
||||
num_modules=1,
|
||||
num_branches=1,
|
||||
block='BOTTLENECK',
|
||||
num_blocks=(4, ),
|
||||
num_channels=(64, )),
|
||||
stage2=dict(
|
||||
num_modules=1,
|
||||
num_branches=2,
|
||||
block='BASIC',
|
||||
num_blocks=(4, 4),
|
||||
num_channels=(18, 36)),
|
||||
stage3=dict(
|
||||
num_modules=4,
|
||||
num_branches=3,
|
||||
block='BASIC',
|
||||
num_blocks=(4, 4, 4),
|
||||
num_channels=(18, 36, 72)),
|
||||
stage4=dict(
|
||||
num_modules=3,
|
||||
num_branches=4,
|
||||
block='BASIC',
|
||||
num_blocks=(4, 4, 4, 4),
|
||||
num_channels=(18, 36, 72, 144)))),
|
||||
decode_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=[18, 36, 72, 144],
|
||||
in_index=(0, 1, 2, 3),
|
||||
channels=sum([18, 36, 72, 144]),
|
||||
input_transform='resize_concat',
|
||||
kernel_size=1,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
drop_out_ratio=-1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)))
|
|
@ -0,0 +1,43 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||
backbone=dict(
|
||||
type='ResNetV1c',
|
||||
depth=50,
|
||||
num_stages=4,
|
||||
out_indices=(0, 1, 2, 3),
|
||||
dilations=(1, 1, 2, 4),
|
||||
strides=(1, 2, 1, 1),
|
||||
norm_cfg=norm_cfg,
|
||||
norm_eval=False,
|
||||
style='pytorch',
|
||||
contract_dilation=True),
|
||||
decode_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=2048,
|
||||
in_index=3,
|
||||
channels=512,
|
||||
num_convs=2,
|
||||
concat_input=True,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
auxiliary_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=1024,
|
||||
in_index=2,
|
||||
channels=256,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
|
@ -0,0 +1,44 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||
backbone=dict(
|
||||
type='ResNetV1c',
|
||||
depth=50,
|
||||
num_stages=4,
|
||||
out_indices=(0, 1, 2, 3),
|
||||
dilations=(1, 1, 2, 4),
|
||||
strides=(1, 2, 1, 1),
|
||||
norm_cfg=norm_cfg,
|
||||
norm_eval=False,
|
||||
style='pytorch',
|
||||
contract_dilation=True),
|
||||
decode_head=dict(
|
||||
type='GCHead',
|
||||
in_channels=2048,
|
||||
in_index=3,
|
||||
channels=512,
|
||||
ratio=1 / 4.,
|
||||
pooling_type='att',
|
||||
fusion_types=('channel_add', ),
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
auxiliary_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=1024,
|
||||
in_index=2,
|
||||
channels=256,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
|
@ -0,0 +1,44 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||
backbone=dict(
|
||||
type='ResNetV1c',
|
||||
depth=50,
|
||||
num_stages=4,
|
||||
out_indices=(0, 1, 2, 3),
|
||||
dilations=(1, 1, 2, 4),
|
||||
strides=(1, 2, 1, 1),
|
||||
norm_cfg=norm_cfg,
|
||||
norm_eval=False,
|
||||
style='pytorch',
|
||||
contract_dilation=True),
|
||||
decode_head=dict(
|
||||
type='NLHead',
|
||||
in_channels=2048,
|
||||
in_index=3,
|
||||
channels=512,
|
||||
drop_out_ratio=0.1,
|
||||
reduction=2,
|
||||
use_scale=True,
|
||||
mode='embedded_gaussian',
|
||||
norm_cfg=norm_cfg,
|
||||
num_classes=19,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
auxiliary_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=1024,
|
||||
in_index=2,
|
||||
channels=256,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
|
@ -0,0 +1,65 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
||||
model = dict(
|
||||
type='CascadeEncoderDecoder',
|
||||
num_stages=2,
|
||||
pretrained='open-mmlab://msra/hrnetv2_w18',
|
||||
backbone=dict(
|
||||
type='HRNet',
|
||||
norm_cfg=norm_cfg,
|
||||
norm_eval=False,
|
||||
extra=dict(
|
||||
stage1=dict(
|
||||
num_modules=1,
|
||||
num_branches=1,
|
||||
block='BOTTLENECK',
|
||||
num_blocks=(4, ),
|
||||
num_channels=(64, )),
|
||||
stage2=dict(
|
||||
num_modules=1,
|
||||
num_branches=2,
|
||||
block='BASIC',
|
||||
num_blocks=(4, 4),
|
||||
num_channels=(18, 36)),
|
||||
stage3=dict(
|
||||
num_modules=4,
|
||||
num_branches=3,
|
||||
block='BASIC',
|
||||
num_blocks=(4, 4, 4),
|
||||
num_channels=(18, 36, 72)),
|
||||
stage4=dict(
|
||||
num_modules=3,
|
||||
num_branches=4,
|
||||
block='BASIC',
|
||||
num_blocks=(4, 4, 4, 4),
|
||||
num_channels=(18, 36, 72, 144)))),
|
||||
decode_head=[
|
||||
dict(
|
||||
type='FCNHead',
|
||||
in_channels=[18, 36, 72, 144],
|
||||
channels=sum([18, 36, 72, 144]),
|
||||
in_index=(0, 1, 2, 3),
|
||||
input_transform='resize_concat',
|
||||
kernel_size=1,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
drop_out_ratio=-1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||||
dict(
|
||||
type='OCRHead',
|
||||
in_channels=[18, 36, 72, 144],
|
||||
in_index=(0, 1, 2, 3),
|
||||
input_transform='resize_concat',
|
||||
channels=512,
|
||||
ocr_channels=256,
|
||||
drop_out_ratio=-1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
])
|
|
@ -0,0 +1,47 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||
backbone=dict(
|
||||
type='ResNetV1c',
|
||||
depth=50,
|
||||
num_stages=4,
|
||||
out_indices=(0, 1, 2, 3),
|
||||
dilations=(1, 1, 2, 4),
|
||||
strides=(1, 2, 1, 1),
|
||||
norm_cfg=norm_cfg,
|
||||
norm_eval=False,
|
||||
style='pytorch',
|
||||
contract_dilation=True),
|
||||
decode_head=dict(
|
||||
type='PSAHead',
|
||||
in_channels=2048,
|
||||
in_index=3,
|
||||
channels=512,
|
||||
mask_size=(97, 97),
|
||||
psa_type='bi-direction',
|
||||
compact=False,
|
||||
shrink_factor=2,
|
||||
normalization_factor=1.0,
|
||||
psa_softmax=True,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
auxiliary_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=1024,
|
||||
in_index=2,
|
||||
channels=256,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
|
@ -0,0 +1,42 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||
backbone=dict(
|
||||
type='ResNetV1c',
|
||||
depth=50,
|
||||
num_stages=4,
|
||||
out_indices=(0, 1, 2, 3),
|
||||
dilations=(1, 1, 2, 4),
|
||||
strides=(1, 2, 1, 1),
|
||||
norm_cfg=norm_cfg,
|
||||
norm_eval=False,
|
||||
style='pytorch',
|
||||
contract_dilation=True),
|
||||
decode_head=dict(
|
||||
type='PSPHead',
|
||||
in_channels=2048,
|
||||
in_index=3,
|
||||
channels=512,
|
||||
pool_scales=(1, 2, 3, 6),
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
auxiliary_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=1024,
|
||||
in_index=2,
|
||||
channels=256,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
|
@ -0,0 +1,42 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||
backbone=dict(
|
||||
type='ResNetV1c',
|
||||
depth=50,
|
||||
num_stages=4,
|
||||
out_indices=(0, 1, 2, 3),
|
||||
dilations=(1, 1, 1, 1),
|
||||
strides=(1, 2, 2, 2),
|
||||
norm_cfg=norm_cfg,
|
||||
norm_eval=False,
|
||||
style='pytorch',
|
||||
contract_dilation=True),
|
||||
decode_head=dict(
|
||||
type='UPerHead',
|
||||
in_channels=[256, 512, 1024, 2048],
|
||||
in_index=[0, 1, 2, 3],
|
||||
pool_scales=(1, 2, 3, 6),
|
||||
channels=512,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
auxiliary_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=1024,
|
||||
in_index=2,
|
||||
channels=256,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
drop_out_ratio=0.1,
|
||||
num_classes=19,
|
||||
norm_cfg=norm_cfg,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
|
@ -0,0 +1,14 @@
|
|||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optimizer_config = dict()
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
policy='poly',
|
||||
power=0.9,
|
||||
by_epoch=False,
|
||||
)
|
||||
# runtime settings
|
||||
total_epochs = 220
|
||||
checkpoint_config = dict(interval=20)
|
||||
evaluation = dict(interval=20, metric='mIoU')
|
||||
runner_type = 'epoch'
|
|
@ -0,0 +1,14 @@
|
|||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optimizer_config = dict()
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
policy='poly',
|
||||
power=0.9,
|
||||
by_epoch=False,
|
||||
)
|
||||
# runtime settings
|
||||
total_iters = 40000
|
||||
checkpoint_config = dict(by_epoch=False, interval=4000)
|
||||
evaluation = dict(interval=4000, metric='mIoU')
|
||||
runner_type = 'iter'
|
|
@ -0,0 +1,14 @@
|
|||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optimizer_config = dict()
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
policy='poly',
|
||||
power=0.9,
|
||||
by_epoch=False,
|
||||
)
|
||||
# runtime settings
|
||||
total_iters = 60000
|
||||
checkpoint_config = dict(by_epoch=False, interval=4000)
|
||||
evaluation = dict(interval=4000, metric='mIoU')
|
||||
runner_type = 'iter'
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './ann_r50_40ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './ann_r50_60ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/ann_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/ann_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './cc_r50_40ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './cc_r50_60ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/cc_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/cc_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './da_r50_40ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './da_r50_60ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/da_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/da_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './deeplabv3_r50_40ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './deeplabv3_r50_60ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/deeplabv3_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/deeplabv3_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './deeplabv3plus_r50_40ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './deeplabv3plus_r50_60ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,5 @@
|
|||
_base_ = [
|
||||
'../_base_/models/deeplabv3plus_r50.py',
|
||||
'../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py',
|
||||
'../_base_/schedules/schedule_40ki.py'
|
||||
]
|
|
@ -0,0 +1,5 @@
|
|||
_base_ = [
|
||||
'../_base_/models/deeplabv3plus_r50.py',
|
||||
'../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py',
|
||||
'../_base_/schedules/schedule_60ki.py'
|
||||
]
|
|
@ -0,0 +1,59 @@
|
|||
_base_ = [
|
||||
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
||||
crop_size = (512, 1024)
|
||||
cudnn_benchmark = True
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='whole')
|
||||
|
||||
# Here: What is parameter 'with_seg'?
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', to_float32=True),
|
||||
dict(type='LoadAnnotations'), # with_seg=True
|
||||
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
||||
dict(type='RandomFlip', flip_ratio=0.5),
|
||||
dict(type='PhotoMetricDistortion'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='RandomCrop', crop_size=crop_size),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(2048, 1024),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img']),
|
||||
])
|
||||
]
|
||||
data = dict(
|
||||
samples_per_gpu=3,
|
||||
workers_per_gpu=3,
|
||||
train=dict(pipeline=train_pipeline),
|
||||
val=dict(pipeline=test_pipeline),
|
||||
test=dict(pipeline=test_pipeline))
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.045, momentum=0.9, weight_decay=4e-5)
|
||||
optimizer_config = dict()
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
policy='poly',
|
||||
power=0.9,
|
||||
by_epoch=False,
|
||||
)
|
||||
# runtime settings
|
||||
total_epochs = 247000
|
||||
evaluation = dict(interval=1000, metric='mIoU')
|
||||
checkpoint_config = dict(interval=1000)
|
|
@ -0,0 +1,61 @@
|
|||
_base_ = [
|
||||
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
||||
crop_size = (512, 1024)
|
||||
cudnn_benchmark = True
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='whole')
|
||||
|
||||
# Here: What is parameter 'with_seg'?
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', to_float32=True),
|
||||
dict(type='LoadAnnotations'), # with_seg=True
|
||||
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
||||
dict(type='RandomFlip', flip_ratio=0.5),
|
||||
dict(type='PhotoMetricDistortion'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='RandomCrop', crop_size=crop_size),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(2048, 1024),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img']),
|
||||
])
|
||||
]
|
||||
data = dict(
|
||||
samples_per_gpu=8,
|
||||
workers_per_gpu=4,
|
||||
train=dict(pipeline=train_pipeline),
|
||||
val=dict(pipeline=test_pipeline),
|
||||
test=dict(pipeline=test_pipeline))
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=4e-5)
|
||||
optimizer_config = dict()
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
policy='poly',
|
||||
power=0.9,
|
||||
by_epoch=False,
|
||||
)
|
||||
# runtime settings
|
||||
# total_epochs = 1000
|
||||
total_iters = 80000
|
||||
evaluation = dict(interval=8000, metric='mIoU')
|
||||
checkpoint_config = dict(interval=8000)
|
||||
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './fcn_r50_40ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './fcn_r50_60ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/fcn_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/fcn_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './gc_r50_40ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './gc_r50_60ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/gc_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/gc_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||
]
|
|
@ -0,0 +1,63 @@
|
|||
_base_ = [
|
||||
'../_base_/models/fcn_hr18.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
||||
model = dict(
|
||||
decode_head=dict(classes_weight=[
|
||||
0.8373, 0.918, 0.866, 1.0345, 1.0166, 0.9969, 0.9754, 1.0489, 0.8786,
|
||||
1.0023, 0.9539, 0.9843, 1.1116, 0.9037, 1.0865, 1.0955, 1.0865, 1.1529,
|
||||
1.0507
|
||||
]))
|
||||
crop_size = (512, 1024)
|
||||
cudnn_benchmark = True
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='whole')
|
||||
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations', with_seg=True),
|
||||
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
||||
dict(type='RandomFlip', flip_ratio=0.5),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='RandomCrop', crop_size=crop_size),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(2048, 1024),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img']),
|
||||
])
|
||||
]
|
||||
data = dict(
|
||||
samples_per_gpu=3,
|
||||
workers_per_gpu=3,
|
||||
train=dict(pipeline=train_pipeline),
|
||||
val=dict(pipeline=test_pipeline),
|
||||
test=dict(pipeline=test_pipeline))
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optimizer_config = dict()
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
policy='poly',
|
||||
power=0.9,
|
||||
by_epoch=False,
|
||||
)
|
||||
# runtime settings
|
||||
total_epochs = 484
|
||||
evaluation = dict(interval=11, metric='mIoU')
|
||||
checkpoint_config = dict(interval=11)
|
|
@ -0,0 +1,9 @@
|
|||
_base_ = './fcn_hr18_4x3_484e_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/hrnetv2_w18_small-b5a04e21.pth',
|
||||
backbone=dict(
|
||||
extra=dict(
|
||||
stage1=dict(num_blocks=(2, )),
|
||||
stage2=dict(num_blocks=(2, 2)),
|
||||
stage3=dict(num_modules=3, num_blocks=(2, 2, 2)),
|
||||
stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2)))))
|
|
@ -0,0 +1,10 @@
|
|||
_base_ = './fcn_hr18_4x3_484e_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='open-mmlab://msra/hrnetv2_w32',
|
||||
backbone=dict(
|
||||
extra=dict(
|
||||
stage2=dict(num_channels=(32, 64)),
|
||||
stage3=dict(num_channels=(32, 64, 128)),
|
||||
stage4=dict(num_channels=(32, 64, 128, 256)))),
|
||||
decode_head=dict(
|
||||
in_channels=[32, 64, 128, 256], channels=sum([32, 64, 128, 256])))
|
|
@ -0,0 +1,10 @@
|
|||
_base_ = './fcn_hr18_4x3_484e_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='open-mmlab://msra/hrnetv2_w40',
|
||||
backbone=dict(
|
||||
extra=dict(
|
||||
stage2=dict(num_channels=(40, 80)),
|
||||
stage3=dict(num_channels=(40, 80, 160)),
|
||||
stage4=dict(num_channels=(40, 80, 160, 320)))),
|
||||
decode_head=dict(
|
||||
in_channels=[40, 80, 160, 320], channels=sum([40, 80, 160, 320])))
|
|
@ -0,0 +1,68 @@
|
|||
_base_ = [
|
||||
'../_base_/models/fcn_hr18.py', '../_base_/datasets/pascal_context.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
||||
model = dict(
|
||||
pretrained='pretrain_model/hrnetv2_w48-d2186c55.pth',
|
||||
backbone=dict(
|
||||
extra=dict(
|
||||
stage2=dict(num_channels=(48, 96)),
|
||||
stage3=dict(num_channels=(48, 96, 192)),
|
||||
stage4=dict(num_channels=(48, 96, 192, 384)))),
|
||||
decode_head=dict(
|
||||
num_classes=60,
|
||||
in_channels=[48, 96, 192, 384],
|
||||
channels=sum([48, 96, 192, 384])))
|
||||
crop_size = (480, 480)
|
||||
cudnn_benchmark = True
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='whole')
|
||||
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations', with_seg=True),
|
||||
dict(type='Resize', img_scale=(520, 520), ratio_range=(0.5, 2.0)),
|
||||
dict(type='RandomFlip', flip_ratio=0.5),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='RandomCrop', crop_size=crop_size),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(480, 480),
|
||||
img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0],
|
||||
flip=True,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img']),
|
||||
])
|
||||
]
|
||||
data = dict(
|
||||
samples_per_gpu=4,
|
||||
workers_per_gpu=4,
|
||||
train=dict(pipeline=train_pipeline),
|
||||
val=dict(pipeline=test_pipeline),
|
||||
test=dict(pipeline=test_pipeline))
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.04, momentum=0.9, weight_decay=0.0001)
|
||||
optimizer_config = dict()
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
policy='poly',
|
||||
power=0.9,
|
||||
by_epoch=False,
|
||||
)
|
||||
# runtime settings
|
||||
total_epochs = 200
|
||||
evaluation = dict(interval=11, metric='mIoU')
|
||||
checkpoint_config = dict(interval=10)
|
|
@ -0,0 +1,10 @@
|
|||
_base_ = './fcn_hr18_4x3_484e_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/hrnetv2_w48-d2186c55.pth',
|
||||
backbone=dict(
|
||||
extra=dict(
|
||||
stage2=dict(num_channels=(48, 96)),
|
||||
stage3=dict(num_channels=(48, 96, 192)),
|
||||
stage4=dict(num_channels=(48, 96, 192, 384)))),
|
||||
decode_head=dict(
|
||||
in_channels=[48, 96, 192, 384], channels=sum([48, 96, 192, 384])))
|
|
@ -0,0 +1,12 @@
|
|||
_base_ = './fcn_hr18_4x3_484e_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/hrnetv2_w48-d2186c55.pth',
|
||||
backbone=dict(
|
||||
extra=dict(
|
||||
stage2=dict(num_channels=(48, 96)),
|
||||
stage3=dict(num_channels=(48, 96, 192)),
|
||||
stage4=dict(num_channels=(48, 96, 192, 384)))),
|
||||
decode_head=dict(
|
||||
in_channels=[48, 96, 192, 384],
|
||||
channels=sum([48, 96, 192, 384]),
|
||||
sampler=dict(type='OHEMSegSampler', thresh=0.9, min_kept=131072)))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './nl_r50_40ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './nl_r50_60ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/nl_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/nl_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||
]
|
|
@ -0,0 +1,57 @@
|
|||
_base_ = [
|
||||
'../_base_/models/ocr_hr18.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
||||
crop_size = (512, 1024)
|
||||
cudnn_benchmark = True
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='whole')
|
||||
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations', with_seg=True),
|
||||
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
||||
dict(type='RandomFlip', flip_ratio=0.5),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='RandomCrop', crop_size=crop_size),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(2048, 1024),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img']),
|
||||
])
|
||||
]
|
||||
data = dict(
|
||||
samples_per_gpu=3,
|
||||
workers_per_gpu=3,
|
||||
train=dict(pipeline=train_pipeline),
|
||||
val=dict(pipeline=test_pipeline),
|
||||
test=dict(pipeline=test_pipeline))
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optimizer_config = dict()
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
policy='poly',
|
||||
power=0.9,
|
||||
by_epoch=False,
|
||||
)
|
||||
# runtime settings
|
||||
total_epochs = 484
|
||||
evaluation = dict(interval=11, metric='mIoU')
|
||||
checkpoint_config = dict(interval=11)
|
|
@ -0,0 +1,10 @@
|
|||
_base_ = './ocr_hr18_4x3_484e_cityscapes.py'
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
||||
model = dict(
|
||||
pretrained='pretrain_model/hrnetv2_w18_small-b5a04e21.pth',
|
||||
backbone=dict(
|
||||
extra=dict(
|
||||
stage1=dict(num_blocks=(2, )),
|
||||
stage2=dict(num_blocks=(2, 2)),
|
||||
stage3=dict(num_modules=3, num_blocks=(2, 2, 2)),
|
||||
stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2)))))
|
|
@ -0,0 +1,39 @@
|
|||
_base_ = './ocr_hr18_4x3_484e_cityscapes.py'
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
||||
model = dict(
|
||||
pretrained='pretrain_model/hrnetv2_w48-d2186c55.pth',
|
||||
backbone=dict(
|
||||
extra=dict(
|
||||
stage2=dict(num_channels=(48, 96)),
|
||||
stage3=dict(num_channels=(48, 96, 192)),
|
||||
stage4=dict(num_channels=(48, 96, 192, 384)))),
|
||||
decode_head=[
|
||||
dict(
|
||||
type='FCNHead',
|
||||
in_channels=[48, 96, 192, 384],
|
||||
channels=sum([48, 96, 192, 384]),
|
||||
input_transform='resize_concat',
|
||||
in_index=(0, 1, 2, 3),
|
||||
kernel_size=1,
|
||||
num_convs=1,
|
||||
norm_cfg=norm_cfg,
|
||||
concat_input=False,
|
||||
drop_out_ratio=-1,
|
||||
num_classes=19,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||||
dict(
|
||||
type='OCRHead',
|
||||
in_channels=[48, 96, 192, 384],
|
||||
channels=512,
|
||||
ocr_channels=256,
|
||||
input_transform='resize_concat',
|
||||
in_index=(0, 1, 2, 3),
|
||||
norm_cfg=norm_cfg,
|
||||
drop_out_ratio=-1,
|
||||
num_classes=19,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0))
|
||||
])
|
|
@ -0,0 +1,40 @@
|
|||
_base_ = './ocr_hr18_4x3_484e_cityscapes.py'
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
||||
model = dict(
|
||||
pretrained='pretrain_model/hrnetv2_w48-d2186c55.pth',
|
||||
backbone=dict(
|
||||
extra=dict(
|
||||
stage2=dict(num_channels=(48, 96)),
|
||||
stage3=dict(num_channels=(48, 96, 192)),
|
||||
stage4=dict(num_channels=(48, 96, 192, 384)))),
|
||||
decode_head=[
|
||||
dict(
|
||||
type='FCNHead',
|
||||
in_channels=[48, 96, 192, 384],
|
||||
channels=sum([48, 96, 192, 384]),
|
||||
input_transform='resize_concat',
|
||||
in_index=(0, 1, 2, 3),
|
||||
kernel_size=1,
|
||||
num_convs=1,
|
||||
norm_cfg=norm_cfg,
|
||||
concat_input=False,
|
||||
drop_out_ratio=-1,
|
||||
num_classes=19,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||||
dict(
|
||||
type='OCRHead',
|
||||
in_channels=[48, 96, 192, 384],
|
||||
channels=512,
|
||||
ocr_channels=256,
|
||||
input_transform='resize_concat',
|
||||
in_index=(0, 1, 2, 3),
|
||||
norm_cfg=norm_cfg,
|
||||
drop_out_ratio=-1,
|
||||
num_classes=19,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
||||
sampler=dict(type='OHEMSegSampler', thresh=0.9, min_kept=131072))
|
||||
])
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './psa_r50_40ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './psa_r50_60ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/psa_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/psa_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './psp_r50_40ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './psp_r50_60ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/psp_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/psp_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './uper_r50_40ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = './uper_r50_60ki_cityscapes.py'
|
||||
model = dict(
|
||||
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||
backbone=dict(depth=101))
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/uper_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||
]
|
|
@ -0,0 +1,4 @@
|
|||
_base_ = [
|
||||
'../_base_/models/uper_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||
]
|
Loading…
Reference in New Issue