mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
Merge branch 'add_fast_scnn' of github.com:johnzja/mmsegmentation into add_fast_scnn
On sensetime servers, I modified the config files. On my PC, I modified collect_env.py. Now I'm going to merge these two modifications.
This commit is contained in:
commit
2e43bae61f
5
.gitignore
vendored
5
.gitignore
vendored
@ -114,10 +114,11 @@ data
|
|||||||
*.log.json
|
*.log.json
|
||||||
work_dirs/
|
work_dirs/
|
||||||
workdirs/
|
workdirs/
|
||||||
configs_unify/
|
|
||||||
results/
|
|
||||||
|
|
||||||
# Pytorch
|
# Pytorch
|
||||||
*.pth
|
*.pth
|
||||||
|
|
||||||
|
# Nohup out file
|
||||||
|
*.file
|
||||||
|
|
||||||
|
|
||||||
|
@ -55,7 +55,7 @@ lr_config = dict(
|
|||||||
)
|
)
|
||||||
# runtime settings
|
# runtime settings
|
||||||
# total_epochs = 1000
|
# total_epochs = 1000
|
||||||
total_iters = 247917
|
total_iters = 247000
|
||||||
evaluation = dict(interval=100, metric='mIoU')
|
evaluation = dict(interval=1000, metric='mIoU')
|
||||||
checkpoint_config = dict(interval=100)
|
checkpoint_config = dict(interval=1000)
|
||||||
|
|
||||||
|
61
configs/fastscnn/fast_scnn_4x8_80k_cityscapes.py
Normal file
61
configs/fastscnn/fast_scnn_4x8_80k_cityscapes.py
Normal file
@ -0,0 +1,61 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py'
|
||||||
|
]
|
||||||
|
crop_size = (512, 1024)
|
||||||
|
cudnn_benchmark = True
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='whole')
|
||||||
|
|
||||||
|
# Here: What is parameter 'with_seg'?
|
||||||
|
img_norm_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||||
|
train_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile', to_float32=True),
|
||||||
|
dict(type='LoadAnnotations'), # with_seg=True
|
||||||
|
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
||||||
|
dict(type='RandomFlip', flip_ratio=0.5),
|
||||||
|
dict(type='PhotoMetricDistortion'),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='RandomCrop', crop_size=crop_size),
|
||||||
|
dict(type='DefaultFormatBundle'),
|
||||||
|
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||||
|
]
|
||||||
|
test_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(
|
||||||
|
type='MultiScaleFlipAug',
|
||||||
|
img_scale=(2048, 1024),
|
||||||
|
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||||
|
flip=False,
|
||||||
|
transforms=[
|
||||||
|
dict(type='Resize', keep_ratio=True),
|
||||||
|
dict(type='RandomFlip'),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='ImageToTensor', keys=['img']),
|
||||||
|
dict(type='Collect', keys=['img']),
|
||||||
|
])
|
||||||
|
]
|
||||||
|
data = dict(
|
||||||
|
samples_per_gpu=8,
|
||||||
|
workers_per_gpu=4,
|
||||||
|
train=dict(pipeline=train_pipeline),
|
||||||
|
val=dict(pipeline=test_pipeline),
|
||||||
|
test=dict(pipeline=test_pipeline))
|
||||||
|
|
||||||
|
# optimizer
|
||||||
|
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=4e-5)
|
||||||
|
optimizer_config = dict()
|
||||||
|
# learning policy
|
||||||
|
lr_config = dict(
|
||||||
|
policy='poly',
|
||||||
|
power=0.9,
|
||||||
|
by_epoch=False,
|
||||||
|
)
|
||||||
|
# runtime settings
|
||||||
|
# total_epochs = 1000
|
||||||
|
total_iters = 80000
|
||||||
|
evaluation = dict(interval=8000, metric='mIoU')
|
||||||
|
checkpoint_config = dict(interval=8000)
|
||||||
|
|
52
configs_unify/_base_/datasets/ade.py
Normal file
52
configs_unify/_base_/datasets/ade.py
Normal file
@ -0,0 +1,52 @@
|
|||||||
|
# dataset settings
|
||||||
|
dataset_type = 'ADEDataset'
|
||||||
|
data_root = 'data/ade/ADEChallengeData2016'
|
||||||
|
img_norm_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||||
|
crop_size = (521, 521)
|
||||||
|
train_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(type='LoadAnnotations', with_seg=True),
|
||||||
|
dict(type='Resize', img_scale=(2049, 521), ratio_range=(0.5, 2.0)),
|
||||||
|
dict(type='RandomFlip', flip_ratio=0.5),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='RandomCrop', crop_size=crop_size),
|
||||||
|
dict(type='DefaultFormatBundle'),
|
||||||
|
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||||
|
]
|
||||||
|
test_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(
|
||||||
|
type='MultiScaleFlipAug',
|
||||||
|
img_scale=(2049, 521),
|
||||||
|
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||||
|
flip=False,
|
||||||
|
transforms=[
|
||||||
|
dict(type='Resize', keep_ratio=True),
|
||||||
|
dict(type='RandomFlip'),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='ImageToTensor', keys=['img']),
|
||||||
|
dict(type='Collect', keys=['img']),
|
||||||
|
])
|
||||||
|
]
|
||||||
|
data = dict(
|
||||||
|
samples_per_gpu=2,
|
||||||
|
workers_per_gpu=2,
|
||||||
|
train=dict(
|
||||||
|
type=dataset_type,
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='images/training',
|
||||||
|
ann_dir='annotations/training',
|
||||||
|
train_pipeline=train_pipeline),
|
||||||
|
val=dict(
|
||||||
|
type=dataset_type,
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='images/validation',
|
||||||
|
ann_dir='annotations/validation',
|
||||||
|
test_pipeline=test_pipeline),
|
||||||
|
test=dict(
|
||||||
|
type=dataset_type,
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='images/validation',
|
||||||
|
ann_dir='annotations/validation',
|
||||||
|
test_pipeline=test_pipeline))
|
56
configs_unify/_base_/datasets/cityscapes.py
Normal file
56
configs_unify/_base_/datasets/cityscapes.py
Normal file
@ -0,0 +1,56 @@
|
|||||||
|
# dataset settings
|
||||||
|
dataset_type = 'CityscapesDataset'
|
||||||
|
data_root = 'data/cityscapes/'
|
||||||
|
img_norm_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||||
|
crop_size = (769, 769)
|
||||||
|
train_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(type='LoadAnnotations'),
|
||||||
|
dict(type='Resize', img_scale=(2049, 1025), ratio_range=(0.5, 2.0)),
|
||||||
|
dict(type='RandomFlip', flip_ratio=0.5),
|
||||||
|
dict(type='PhotoMetricDistortion'),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
|
dict(type='DefaultFormatBundle'),
|
||||||
|
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||||
|
]
|
||||||
|
test_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(
|
||||||
|
type='MultiScaleFlipAug',
|
||||||
|
img_scale=(2049, 1025),
|
||||||
|
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||||
|
flip=False,
|
||||||
|
transforms=[
|
||||||
|
dict(type='Resize', keep_ratio=True),
|
||||||
|
dict(type='RandomFlip'),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='ImageToTensor', keys=['img']),
|
||||||
|
dict(type='Collect', keys=['img']),
|
||||||
|
])
|
||||||
|
]
|
||||||
|
data = dict(
|
||||||
|
samples_per_gpu=2,
|
||||||
|
workers_per_gpu=2,
|
||||||
|
train=dict(
|
||||||
|
type=dataset_type,
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='leftImg8bit/train',
|
||||||
|
ann_dir='gtFine/train',
|
||||||
|
split='splits/train.txt',
|
||||||
|
pipeline=train_pipeline),
|
||||||
|
val=dict(
|
||||||
|
type=dataset_type,
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='leftImg8bit/val',
|
||||||
|
ann_dir='gtFine/val',
|
||||||
|
split='splits/val.txt',
|
||||||
|
pipeline=test_pipeline),
|
||||||
|
test=dict(
|
||||||
|
type=dataset_type,
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='leftImg8bit/val',
|
||||||
|
ann_dir='gtFine/val',
|
||||||
|
split='splits/val.txt',
|
||||||
|
pipeline=test_pipeline))
|
24
configs_unify/_base_/datasets/pascal_context.py
Normal file
24
configs_unify/_base_/datasets/pascal_context.py
Normal file
@ -0,0 +1,24 @@
|
|||||||
|
# dataset settings
|
||||||
|
dataset_type = 'PascalContextDataset'
|
||||||
|
data_root = 'data/VOCdevkit/VOC2010'
|
||||||
|
data = dict(
|
||||||
|
samples_per_gpu=2,
|
||||||
|
workers_per_gpu=2,
|
||||||
|
train=dict(
|
||||||
|
type=dataset_type,
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='JPEGImages',
|
||||||
|
ann_dir='SegmentationClassContext',
|
||||||
|
split='ImageSets/SegmentationContext/train.txt'),
|
||||||
|
val=dict(
|
||||||
|
type=dataset_type,
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='JPEGImages',
|
||||||
|
ann_dir='SegmentationClassContext',
|
||||||
|
split='ImageSets/SegmentationContext/val.txt'),
|
||||||
|
test=dict(
|
||||||
|
type=dataset_type,
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='JPEGImages',
|
||||||
|
ann_dir='SegmentationClassContext',
|
||||||
|
split='ImageSets/SegmentationContext/val.txt'))
|
55
configs_unify/_base_/datasets/pascal_voc12.py
Normal file
55
configs_unify/_base_/datasets/pascal_voc12.py
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
# dataset settings
|
||||||
|
dataset_type = 'PascalVOCDataset'
|
||||||
|
data_root = 'data/VOCdevkit/VOC2012'
|
||||||
|
img_norm_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||||
|
crop_size = (521, 521)
|
||||||
|
train_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(type='LoadAnnotations', with_seg=True),
|
||||||
|
dict(type='Resize', img_scale=(2049, 521), ratio_range=(0.5, 2.0)),
|
||||||
|
dict(type='RandomFlip', flip_ratio=0.5),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='RandomCrop', crop_size=crop_size),
|
||||||
|
dict(type='DefaultFormatBundle'),
|
||||||
|
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||||
|
]
|
||||||
|
test_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(
|
||||||
|
type='MultiScaleFlipAug',
|
||||||
|
img_scale=(2049, 521),
|
||||||
|
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||||
|
flip=False,
|
||||||
|
transforms=[
|
||||||
|
dict(type='Resize', keep_ratio=True),
|
||||||
|
dict(type='RandomFlip'),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='ImageToTensor', keys=['img']),
|
||||||
|
dict(type='Collect', keys=['img']),
|
||||||
|
])
|
||||||
|
]
|
||||||
|
data = dict(
|
||||||
|
samples_per_gpu=2,
|
||||||
|
workers_per_gpu=2,
|
||||||
|
train=dict(
|
||||||
|
type=dataset_type,
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='JPEGImages',
|
||||||
|
ann_dir='SegmentationClass',
|
||||||
|
split='ImageSets/Segmentation/train.txt',
|
||||||
|
pipeline=train_pipeline),
|
||||||
|
val=dict(
|
||||||
|
type=dataset_type,
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='JPEGImages',
|
||||||
|
ann_dir='SegmentationClass',
|
||||||
|
split='ImageSets/Segmentation/val.txt',
|
||||||
|
pipeline=test_pipeline),
|
||||||
|
test=dict(
|
||||||
|
type=dataset_type,
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='JPEGImages',
|
||||||
|
ann_dir='SegmentationClass',
|
||||||
|
split='ImageSets/Segmentation/val.txt',
|
||||||
|
pipeline=test_pipeline))
|
9
configs_unify/_base_/datasets/pascal_voc12_aug.py
Normal file
9
configs_unify/_base_/datasets/pascal_voc12_aug.py
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
_base_ = './pascal_voc12.py'
|
||||||
|
# dataset settings
|
||||||
|
data = dict(
|
||||||
|
train=dict(
|
||||||
|
ann_dir=['SegmentationClass', 'SegmentationClassAug'],
|
||||||
|
split=[
|
||||||
|
'ImageSets/Segmentation/train.txt',
|
||||||
|
'ImageSets/Segmentation/aug.txt'
|
||||||
|
]))
|
14
configs_unify/_base_/default_runtime.py
Normal file
14
configs_unify/_base_/default_runtime.py
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
# yapf:disable
|
||||||
|
log_config = dict(
|
||||||
|
interval=50,
|
||||||
|
hooks=[
|
||||||
|
dict(type='TextLoggerHook'),
|
||||||
|
# dict(type='TensorboardLoggerHook')
|
||||||
|
])
|
||||||
|
# yapf:enable
|
||||||
|
dist_params = dict(backend='nccl')
|
||||||
|
log_level = 'INFO'
|
||||||
|
load_from = None
|
||||||
|
resume_from = None
|
||||||
|
workflow = [('train', 1)]
|
||||||
|
cudnn_benchmark = True
|
44
configs_unify/_base_/models/ann_r50.py
Normal file
44
configs_unify/_base_/models/ann_r50.py
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
# model settings
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
model = dict(
|
||||||
|
type='EncoderDecoder',
|
||||||
|
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||||
|
backbone=dict(
|
||||||
|
type='ResNetV1c',
|
||||||
|
depth=50,
|
||||||
|
num_stages=4,
|
||||||
|
out_indices=(0, 1, 2, 3),
|
||||||
|
dilations=(1, 1, 2, 4),
|
||||||
|
strides=(1, 2, 1, 1),
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
norm_eval=False,
|
||||||
|
style='pytorch',
|
||||||
|
contract_dilation=True),
|
||||||
|
decode_head=dict(
|
||||||
|
type='ANNHead',
|
||||||
|
in_channels=[1024, 2048],
|
||||||
|
in_index=[2, 3],
|
||||||
|
channels=512,
|
||||||
|
project_channels=256,
|
||||||
|
query_scales=(1, ),
|
||||||
|
key_pool_scales=(1, 3, 6, 8),
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||||
|
auxiliary_head=dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=1024,
|
||||||
|
in_index=2,
|
||||||
|
channels=256,
|
||||||
|
num_convs=1,
|
||||||
|
concat_input=False,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
42
configs_unify/_base_/models/cc_r50.py
Normal file
42
configs_unify/_base_/models/cc_r50.py
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
# model settings
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
model = dict(
|
||||||
|
type='EncoderDecoder',
|
||||||
|
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||||
|
backbone=dict(
|
||||||
|
type='ResNetV1c',
|
||||||
|
depth=50,
|
||||||
|
num_stages=4,
|
||||||
|
out_indices=(0, 1, 2, 3),
|
||||||
|
dilations=(1, 1, 2, 4),
|
||||||
|
strides=(1, 2, 1, 1),
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
norm_eval=False,
|
||||||
|
style='pytorch',
|
||||||
|
contract_dilation=True),
|
||||||
|
decode_head=dict(
|
||||||
|
type='CCHead',
|
||||||
|
in_channels=2048,
|
||||||
|
in_index=3,
|
||||||
|
channels=512,
|
||||||
|
recurrence=2,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||||
|
auxiliary_head=dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=1024,
|
||||||
|
in_index=2,
|
||||||
|
channels=256,
|
||||||
|
num_convs=1,
|
||||||
|
concat_input=False,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
42
configs_unify/_base_/models/da_r50.py
Normal file
42
configs_unify/_base_/models/da_r50.py
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
# model settings
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
model = dict(
|
||||||
|
type='EncoderDecoder',
|
||||||
|
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||||
|
backbone=dict(
|
||||||
|
type='ResNetV1c',
|
||||||
|
depth=50,
|
||||||
|
num_stages=4,
|
||||||
|
out_indices=(0, 1, 2, 3),
|
||||||
|
dilations=(1, 1, 2, 4),
|
||||||
|
strides=(1, 2, 1, 1),
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
norm_eval=False,
|
||||||
|
style='pytorch',
|
||||||
|
contract_dilation=True),
|
||||||
|
decode_head=dict(
|
||||||
|
type='DAHead',
|
||||||
|
in_channels=2048,
|
||||||
|
in_index=3,
|
||||||
|
channels=512,
|
||||||
|
pam_channels=64,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||||
|
auxiliary_head=dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=1024,
|
||||||
|
in_index=2,
|
||||||
|
channels=256,
|
||||||
|
num_convs=1,
|
||||||
|
concat_input=False,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
42
configs_unify/_base_/models/deeplabv3_r50.py
Normal file
42
configs_unify/_base_/models/deeplabv3_r50.py
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
# model settings
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
model = dict(
|
||||||
|
type='EncoderDecoder',
|
||||||
|
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||||
|
backbone=dict(
|
||||||
|
type='ResNetV1c',
|
||||||
|
depth=50,
|
||||||
|
num_stages=4,
|
||||||
|
out_indices=(0, 1, 2, 3),
|
||||||
|
dilations=(1, 1, 2, 4),
|
||||||
|
strides=(1, 2, 1, 1),
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
norm_eval=False,
|
||||||
|
style='pytorch',
|
||||||
|
contract_dilation=True),
|
||||||
|
decode_head=dict(
|
||||||
|
type='ASPPHead',
|
||||||
|
in_channels=2048,
|
||||||
|
in_index=3,
|
||||||
|
channels=512,
|
||||||
|
dilations=(1, 12, 24, 36),
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||||
|
auxiliary_head=dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=1024,
|
||||||
|
in_index=2,
|
||||||
|
channels=256,
|
||||||
|
num_convs=1,
|
||||||
|
concat_input=False,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
44
configs_unify/_base_/models/deeplabv3plus_r50.py
Normal file
44
configs_unify/_base_/models/deeplabv3plus_r50.py
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
# model settings
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
model = dict(
|
||||||
|
type='EncoderDecoder',
|
||||||
|
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||||
|
backbone=dict(
|
||||||
|
type='ResNetV1c',
|
||||||
|
depth=50,
|
||||||
|
num_stages=4,
|
||||||
|
out_indices=(0, 1, 2, 3),
|
||||||
|
dilations=(1, 1, 2, 4),
|
||||||
|
strides=(1, 2, 1, 1),
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
norm_eval=False,
|
||||||
|
style='pytorch',
|
||||||
|
contract_dilation=True),
|
||||||
|
decode_head=dict(
|
||||||
|
type='SepASPPHead',
|
||||||
|
in_channels=2048,
|
||||||
|
in_index=3,
|
||||||
|
channels=512,
|
||||||
|
dilations=(1, 12, 24, 36),
|
||||||
|
c1_in_channels=256,
|
||||||
|
c1_channels=48,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||||
|
auxiliary_head=dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=1024,
|
||||||
|
in_index=2,
|
||||||
|
channels=256,
|
||||||
|
num_convs=1,
|
||||||
|
concat_input=False,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
57
configs_unify/_base_/models/fast_scnn.py
Normal file
57
configs_unify/_base_/models/fast_scnn.py
Normal file
@ -0,0 +1,57 @@
|
|||||||
|
# model settings
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
||||||
|
model = dict(
|
||||||
|
type='EncoderDecoder',
|
||||||
|
backbone=dict(
|
||||||
|
type='FastSCNN',
|
||||||
|
downsample_dw_channels1=32,
|
||||||
|
downsample_dw_channels2=48,
|
||||||
|
global_in_channels=64,
|
||||||
|
global_block_channels=(64, 96, 128),
|
||||||
|
global_out_channels=128,
|
||||||
|
higher_in_channels=64,
|
||||||
|
lower_in_channels=128,
|
||||||
|
fusion_out_channels=128,
|
||||||
|
scale_factor=4,
|
||||||
|
out_indices=(0, 1, 2),
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
align_corners=False),
|
||||||
|
decode_head=dict(
|
||||||
|
type='SepFCNHead',
|
||||||
|
in_channels=128,
|
||||||
|
channels=128,
|
||||||
|
concat_input=False,
|
||||||
|
num_classes=19,
|
||||||
|
in_index=-1,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
align_corners=False,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.)),
|
||||||
|
auxiliary_head=[
|
||||||
|
dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=128,
|
||||||
|
channels=32,
|
||||||
|
num_convs=1,
|
||||||
|
num_classes=19,
|
||||||
|
in_index=-2,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
concat_input=False,
|
||||||
|
align_corners=False,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||||||
|
dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=64,
|
||||||
|
channels=32,
|
||||||
|
num_convs=1,
|
||||||
|
num_classes=19,
|
||||||
|
in_index=-3,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
concat_input=False,
|
||||||
|
align_corners=False,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||||||
|
])
|
||||||
|
|
||||||
|
total_iters = 10000
|
49
configs_unify/_base_/models/fcn_hr18.py
Normal file
49
configs_unify/_base_/models/fcn_hr18.py
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
# model settings
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
||||||
|
model = dict(
|
||||||
|
type='EncoderDecoder',
|
||||||
|
pretrained='open-mmlab://msra/hrnetv2_w18',
|
||||||
|
backbone=dict(
|
||||||
|
type='HRNet',
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
norm_eval=False,
|
||||||
|
extra=dict(
|
||||||
|
stage1=dict(
|
||||||
|
num_modules=1,
|
||||||
|
num_branches=1,
|
||||||
|
block='BOTTLENECK',
|
||||||
|
num_blocks=(4, ),
|
||||||
|
num_channels=(64, )),
|
||||||
|
stage2=dict(
|
||||||
|
num_modules=1,
|
||||||
|
num_branches=2,
|
||||||
|
block='BASIC',
|
||||||
|
num_blocks=(4, 4),
|
||||||
|
num_channels=(18, 36)),
|
||||||
|
stage3=dict(
|
||||||
|
num_modules=4,
|
||||||
|
num_branches=3,
|
||||||
|
block='BASIC',
|
||||||
|
num_blocks=(4, 4, 4),
|
||||||
|
num_channels=(18, 36, 72)),
|
||||||
|
stage4=dict(
|
||||||
|
num_modules=3,
|
||||||
|
num_branches=4,
|
||||||
|
block='BASIC',
|
||||||
|
num_blocks=(4, 4, 4, 4),
|
||||||
|
num_channels=(18, 36, 72, 144)))),
|
||||||
|
decode_head=dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=[18, 36, 72, 144],
|
||||||
|
in_index=(0, 1, 2, 3),
|
||||||
|
channels=sum([18, 36, 72, 144]),
|
||||||
|
input_transform='resize_concat',
|
||||||
|
kernel_size=1,
|
||||||
|
num_convs=1,
|
||||||
|
concat_input=False,
|
||||||
|
drop_out_ratio=-1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
align_corners=False,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)))
|
43
configs_unify/_base_/models/fcn_r50.py
Normal file
43
configs_unify/_base_/models/fcn_r50.py
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
# model settings
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
model = dict(
|
||||||
|
type='EncoderDecoder',
|
||||||
|
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||||
|
backbone=dict(
|
||||||
|
type='ResNetV1c',
|
||||||
|
depth=50,
|
||||||
|
num_stages=4,
|
||||||
|
out_indices=(0, 1, 2, 3),
|
||||||
|
dilations=(1, 1, 2, 4),
|
||||||
|
strides=(1, 2, 1, 1),
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
norm_eval=False,
|
||||||
|
style='pytorch',
|
||||||
|
contract_dilation=True),
|
||||||
|
decode_head=dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=2048,
|
||||||
|
in_index=3,
|
||||||
|
channels=512,
|
||||||
|
num_convs=2,
|
||||||
|
concat_input=True,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||||
|
auxiliary_head=dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=1024,
|
||||||
|
in_index=2,
|
||||||
|
channels=256,
|
||||||
|
num_convs=1,
|
||||||
|
concat_input=False,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
44
configs_unify/_base_/models/gc_r50.py
Normal file
44
configs_unify/_base_/models/gc_r50.py
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
# model settings
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
model = dict(
|
||||||
|
type='EncoderDecoder',
|
||||||
|
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||||
|
backbone=dict(
|
||||||
|
type='ResNetV1c',
|
||||||
|
depth=50,
|
||||||
|
num_stages=4,
|
||||||
|
out_indices=(0, 1, 2, 3),
|
||||||
|
dilations=(1, 1, 2, 4),
|
||||||
|
strides=(1, 2, 1, 1),
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
norm_eval=False,
|
||||||
|
style='pytorch',
|
||||||
|
contract_dilation=True),
|
||||||
|
decode_head=dict(
|
||||||
|
type='GCHead',
|
||||||
|
in_channels=2048,
|
||||||
|
in_index=3,
|
||||||
|
channels=512,
|
||||||
|
ratio=1 / 4.,
|
||||||
|
pooling_type='att',
|
||||||
|
fusion_types=('channel_add', ),
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||||
|
auxiliary_head=dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=1024,
|
||||||
|
in_index=2,
|
||||||
|
channels=256,
|
||||||
|
num_convs=1,
|
||||||
|
concat_input=False,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
44
configs_unify/_base_/models/nl_r50.py
Normal file
44
configs_unify/_base_/models/nl_r50.py
Normal file
@ -0,0 +1,44 @@
|
|||||||
|
# model settings
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
model = dict(
|
||||||
|
type='EncoderDecoder',
|
||||||
|
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||||
|
backbone=dict(
|
||||||
|
type='ResNetV1c',
|
||||||
|
depth=50,
|
||||||
|
num_stages=4,
|
||||||
|
out_indices=(0, 1, 2, 3),
|
||||||
|
dilations=(1, 1, 2, 4),
|
||||||
|
strides=(1, 2, 1, 1),
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
norm_eval=False,
|
||||||
|
style='pytorch',
|
||||||
|
contract_dilation=True),
|
||||||
|
decode_head=dict(
|
||||||
|
type='NLHead',
|
||||||
|
in_channels=2048,
|
||||||
|
in_index=3,
|
||||||
|
channels=512,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
reduction=2,
|
||||||
|
use_scale=True,
|
||||||
|
mode='embedded_gaussian',
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
num_classes=19,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||||
|
auxiliary_head=dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=1024,
|
||||||
|
in_index=2,
|
||||||
|
channels=256,
|
||||||
|
num_convs=1,
|
||||||
|
concat_input=False,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
65
configs_unify/_base_/models/ocr_hr18.py
Normal file
65
configs_unify/_base_/models/ocr_hr18.py
Normal file
@ -0,0 +1,65 @@
|
|||||||
|
# model settings
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
||||||
|
model = dict(
|
||||||
|
type='CascadeEncoderDecoder',
|
||||||
|
num_stages=2,
|
||||||
|
pretrained='open-mmlab://msra/hrnetv2_w18',
|
||||||
|
backbone=dict(
|
||||||
|
type='HRNet',
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
norm_eval=False,
|
||||||
|
extra=dict(
|
||||||
|
stage1=dict(
|
||||||
|
num_modules=1,
|
||||||
|
num_branches=1,
|
||||||
|
block='BOTTLENECK',
|
||||||
|
num_blocks=(4, ),
|
||||||
|
num_channels=(64, )),
|
||||||
|
stage2=dict(
|
||||||
|
num_modules=1,
|
||||||
|
num_branches=2,
|
||||||
|
block='BASIC',
|
||||||
|
num_blocks=(4, 4),
|
||||||
|
num_channels=(18, 36)),
|
||||||
|
stage3=dict(
|
||||||
|
num_modules=4,
|
||||||
|
num_branches=3,
|
||||||
|
block='BASIC',
|
||||||
|
num_blocks=(4, 4, 4),
|
||||||
|
num_channels=(18, 36, 72)),
|
||||||
|
stage4=dict(
|
||||||
|
num_modules=3,
|
||||||
|
num_branches=4,
|
||||||
|
block='BASIC',
|
||||||
|
num_blocks=(4, 4, 4, 4),
|
||||||
|
num_channels=(18, 36, 72, 144)))),
|
||||||
|
decode_head=[
|
||||||
|
dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=[18, 36, 72, 144],
|
||||||
|
channels=sum([18, 36, 72, 144]),
|
||||||
|
in_index=(0, 1, 2, 3),
|
||||||
|
input_transform='resize_concat',
|
||||||
|
kernel_size=1,
|
||||||
|
num_convs=1,
|
||||||
|
concat_input=False,
|
||||||
|
drop_out_ratio=-1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
align_corners=False,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||||||
|
dict(
|
||||||
|
type='OCRHead',
|
||||||
|
in_channels=[18, 36, 72, 144],
|
||||||
|
in_index=(0, 1, 2, 3),
|
||||||
|
input_transform='resize_concat',
|
||||||
|
channels=512,
|
||||||
|
ocr_channels=256,
|
||||||
|
drop_out_ratio=-1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
align_corners=False,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||||
|
])
|
47
configs_unify/_base_/models/psa_r50.py
Normal file
47
configs_unify/_base_/models/psa_r50.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
# model settings
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
model = dict(
|
||||||
|
type='EncoderDecoder',
|
||||||
|
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||||
|
backbone=dict(
|
||||||
|
type='ResNetV1c',
|
||||||
|
depth=50,
|
||||||
|
num_stages=4,
|
||||||
|
out_indices=(0, 1, 2, 3),
|
||||||
|
dilations=(1, 1, 2, 4),
|
||||||
|
strides=(1, 2, 1, 1),
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
norm_eval=False,
|
||||||
|
style='pytorch',
|
||||||
|
contract_dilation=True),
|
||||||
|
decode_head=dict(
|
||||||
|
type='PSAHead',
|
||||||
|
in_channels=2048,
|
||||||
|
in_index=3,
|
||||||
|
channels=512,
|
||||||
|
mask_size=(97, 97),
|
||||||
|
psa_type='bi-direction',
|
||||||
|
compact=False,
|
||||||
|
shrink_factor=2,
|
||||||
|
normalization_factor=1.0,
|
||||||
|
psa_softmax=True,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||||
|
auxiliary_head=dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=1024,
|
||||||
|
in_index=2,
|
||||||
|
channels=256,
|
||||||
|
num_convs=1,
|
||||||
|
concat_input=False,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
42
configs_unify/_base_/models/psp_r50.py
Normal file
42
configs_unify/_base_/models/psp_r50.py
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
# model settings
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
model = dict(
|
||||||
|
type='EncoderDecoder',
|
||||||
|
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||||
|
backbone=dict(
|
||||||
|
type='ResNetV1c',
|
||||||
|
depth=50,
|
||||||
|
num_stages=4,
|
||||||
|
out_indices=(0, 1, 2, 3),
|
||||||
|
dilations=(1, 1, 2, 4),
|
||||||
|
strides=(1, 2, 1, 1),
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
norm_eval=False,
|
||||||
|
style='pytorch',
|
||||||
|
contract_dilation=True),
|
||||||
|
decode_head=dict(
|
||||||
|
type='PSPHead',
|
||||||
|
in_channels=2048,
|
||||||
|
in_index=3,
|
||||||
|
channels=512,
|
||||||
|
pool_scales=(1, 2, 3, 6),
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||||
|
auxiliary_head=dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=1024,
|
||||||
|
in_index=2,
|
||||||
|
channels=256,
|
||||||
|
num_convs=1,
|
||||||
|
concat_input=False,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
42
configs_unify/_base_/models/uper_r50.py
Normal file
42
configs_unify/_base_/models/uper_r50.py
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
# model settings
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
model = dict(
|
||||||
|
type='EncoderDecoder',
|
||||||
|
pretrained='pretrain_model/resnet50_v1c-66047269.pth',
|
||||||
|
backbone=dict(
|
||||||
|
type='ResNetV1c',
|
||||||
|
depth=50,
|
||||||
|
num_stages=4,
|
||||||
|
out_indices=(0, 1, 2, 3),
|
||||||
|
dilations=(1, 1, 1, 1),
|
||||||
|
strides=(1, 2, 2, 2),
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
norm_eval=False,
|
||||||
|
style='pytorch',
|
||||||
|
contract_dilation=True),
|
||||||
|
decode_head=dict(
|
||||||
|
type='UPerHead',
|
||||||
|
in_channels=[256, 512, 1024, 2048],
|
||||||
|
in_index=[0, 1, 2, 3],
|
||||||
|
pool_scales=(1, 2, 3, 6),
|
||||||
|
channels=512,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||||
|
auxiliary_head=dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=1024,
|
||||||
|
in_index=2,
|
||||||
|
channels=256,
|
||||||
|
num_convs=1,
|
||||||
|
concat_input=False,
|
||||||
|
drop_out_ratio=0.1,
|
||||||
|
num_classes=19,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)))
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='slide', crop_size=(769, 769), stride=(513, 513))
|
14
configs_unify/_base_/schedules/schedule_220e.py
Normal file
14
configs_unify/_base_/schedules/schedule_220e.py
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
# optimizer
|
||||||
|
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||||
|
optimizer_config = dict()
|
||||||
|
# learning policy
|
||||||
|
lr_config = dict(
|
||||||
|
policy='poly',
|
||||||
|
power=0.9,
|
||||||
|
by_epoch=False,
|
||||||
|
)
|
||||||
|
# runtime settings
|
||||||
|
total_epochs = 220
|
||||||
|
checkpoint_config = dict(interval=20)
|
||||||
|
evaluation = dict(interval=20, metric='mIoU')
|
||||||
|
runner_type = 'epoch'
|
14
configs_unify/_base_/schedules/schedule_40ki.py
Normal file
14
configs_unify/_base_/schedules/schedule_40ki.py
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
# optimizer
|
||||||
|
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||||
|
optimizer_config = dict()
|
||||||
|
# learning policy
|
||||||
|
lr_config = dict(
|
||||||
|
policy='poly',
|
||||||
|
power=0.9,
|
||||||
|
by_epoch=False,
|
||||||
|
)
|
||||||
|
# runtime settings
|
||||||
|
total_iters = 40000
|
||||||
|
checkpoint_config = dict(by_epoch=False, interval=4000)
|
||||||
|
evaluation = dict(interval=4000, metric='mIoU')
|
||||||
|
runner_type = 'iter'
|
14
configs_unify/_base_/schedules/schedule_60ki.py
Normal file
14
configs_unify/_base_/schedules/schedule_60ki.py
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
# optimizer
|
||||||
|
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||||
|
optimizer_config = dict()
|
||||||
|
# learning policy
|
||||||
|
lr_config = dict(
|
||||||
|
policy='poly',
|
||||||
|
power=0.9,
|
||||||
|
by_epoch=False,
|
||||||
|
)
|
||||||
|
# runtime settings
|
||||||
|
total_iters = 60000
|
||||||
|
checkpoint_config = dict(by_epoch=False, interval=4000)
|
||||||
|
evaluation = dict(interval=4000, metric='mIoU')
|
||||||
|
runner_type = 'iter'
|
4
configs_unify/annnet/ann_r101_40ki_cityscapes.py
Normal file
4
configs_unify/annnet/ann_r101_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './ann_r50_40ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/annnet/ann_r101_60ki_cityscapes.py
Normal file
4
configs_unify/annnet/ann_r101_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './ann_r50_60ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/annnet/ann_r50_40ki_cityscapes.py
Normal file
4
configs_unify/annnet/ann_r50_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/ann_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||||
|
]
|
4
configs_unify/annnet/ann_r50_60ki_cityscapes.py
Normal file
4
configs_unify/annnet/ann_r50_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/ann_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||||
|
]
|
4
configs_unify/ccnet/cc_r101_40ki_cityscapes.py
Normal file
4
configs_unify/ccnet/cc_r101_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './cc_r50_40ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/ccnet/cc_r101_60ki_cityscapes.py
Normal file
4
configs_unify/ccnet/cc_r101_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './cc_r50_60ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/ccnet/cc_r50_40ki_cityscapes.py
Normal file
4
configs_unify/ccnet/cc_r50_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/cc_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||||
|
]
|
4
configs_unify/ccnet/cc_r50_60ki_cityscapes.py
Normal file
4
configs_unify/ccnet/cc_r50_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/cc_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||||
|
]
|
4
configs_unify/danet/da_r101_40ki_cityscapes.py
Normal file
4
configs_unify/danet/da_r101_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './da_r50_40ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/danet/da_r101_60ki_cityscapes.py
Normal file
4
configs_unify/danet/da_r101_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './da_r50_60ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/danet/da_r50_40ki_cityscapes.py
Normal file
4
configs_unify/danet/da_r50_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/da_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||||
|
]
|
4
configs_unify/danet/da_r50_60ki_cityscapes.py
Normal file
4
configs_unify/danet/da_r50_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/da_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||||
|
]
|
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './deeplabv3_r50_40ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './deeplabv3_r50_60ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/deeplabv3/deeplabv3_r50_40ki_cityscapes.py
Normal file
4
configs_unify/deeplabv3/deeplabv3_r50_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/deeplabv3_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||||
|
]
|
4
configs_unify/deeplabv3/deeplabv3_r50_60ki_cityscapes.py
Normal file
4
configs_unify/deeplabv3/deeplabv3_r50_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/deeplabv3_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||||
|
]
|
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './deeplabv3plus_r50_40ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './deeplabv3plus_r50_60ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
@ -0,0 +1,5 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/deeplabv3plus_r50.py',
|
||||||
|
'../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py',
|
||||||
|
'../_base_/schedules/schedule_40ki.py'
|
||||||
|
]
|
@ -0,0 +1,5 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/deeplabv3plus_r50.py',
|
||||||
|
'../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py',
|
||||||
|
'../_base_/schedules/schedule_60ki.py'
|
||||||
|
]
|
59
configs_unify/fastscnn/fast_scnn_4x3_1000e_cityscapes.py
Normal file
59
configs_unify/fastscnn/fast_scnn_4x3_1000e_cityscapes.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py'
|
||||||
|
]
|
||||||
|
crop_size = (512, 1024)
|
||||||
|
cudnn_benchmark = True
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='whole')
|
||||||
|
|
||||||
|
# Here: What is parameter 'with_seg'?
|
||||||
|
img_norm_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||||
|
train_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile', to_float32=True),
|
||||||
|
dict(type='LoadAnnotations'), # with_seg=True
|
||||||
|
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
||||||
|
dict(type='RandomFlip', flip_ratio=0.5),
|
||||||
|
dict(type='PhotoMetricDistortion'),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='RandomCrop', crop_size=crop_size),
|
||||||
|
dict(type='DefaultFormatBundle'),
|
||||||
|
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||||
|
]
|
||||||
|
test_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(
|
||||||
|
type='MultiScaleFlipAug',
|
||||||
|
img_scale=(2048, 1024),
|
||||||
|
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||||
|
flip=False,
|
||||||
|
transforms=[
|
||||||
|
dict(type='Resize', keep_ratio=True),
|
||||||
|
dict(type='RandomFlip'),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='ImageToTensor', keys=['img']),
|
||||||
|
dict(type='Collect', keys=['img']),
|
||||||
|
])
|
||||||
|
]
|
||||||
|
data = dict(
|
||||||
|
samples_per_gpu=3,
|
||||||
|
workers_per_gpu=3,
|
||||||
|
train=dict(pipeline=train_pipeline),
|
||||||
|
val=dict(pipeline=test_pipeline),
|
||||||
|
test=dict(pipeline=test_pipeline))
|
||||||
|
|
||||||
|
# optimizer
|
||||||
|
optimizer = dict(type='SGD', lr=0.045, momentum=0.9, weight_decay=4e-5)
|
||||||
|
optimizer_config = dict()
|
||||||
|
# learning policy
|
||||||
|
lr_config = dict(
|
||||||
|
policy='poly',
|
||||||
|
power=0.9,
|
||||||
|
by_epoch=False,
|
||||||
|
)
|
||||||
|
# runtime settings
|
||||||
|
total_epochs = 247000
|
||||||
|
evaluation = dict(interval=1000, metric='mIoU')
|
||||||
|
checkpoint_config = dict(interval=1000)
|
61
configs_unify/fastscnn/fast_scnn_4x8_80k_cityscapes.py
Normal file
61
configs_unify/fastscnn/fast_scnn_4x8_80k_cityscapes.py
Normal file
@ -0,0 +1,61 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py'
|
||||||
|
]
|
||||||
|
crop_size = (512, 1024)
|
||||||
|
cudnn_benchmark = True
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='whole')
|
||||||
|
|
||||||
|
# Here: What is parameter 'with_seg'?
|
||||||
|
img_norm_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||||
|
train_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile', to_float32=True),
|
||||||
|
dict(type='LoadAnnotations'), # with_seg=True
|
||||||
|
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
||||||
|
dict(type='RandomFlip', flip_ratio=0.5),
|
||||||
|
dict(type='PhotoMetricDistortion'),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='RandomCrop', crop_size=crop_size),
|
||||||
|
dict(type='DefaultFormatBundle'),
|
||||||
|
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||||
|
]
|
||||||
|
test_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(
|
||||||
|
type='MultiScaleFlipAug',
|
||||||
|
img_scale=(2048, 1024),
|
||||||
|
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||||
|
flip=False,
|
||||||
|
transforms=[
|
||||||
|
dict(type='Resize', keep_ratio=True),
|
||||||
|
dict(type='RandomFlip'),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='ImageToTensor', keys=['img']),
|
||||||
|
dict(type='Collect', keys=['img']),
|
||||||
|
])
|
||||||
|
]
|
||||||
|
data = dict(
|
||||||
|
samples_per_gpu=8,
|
||||||
|
workers_per_gpu=4,
|
||||||
|
train=dict(pipeline=train_pipeline),
|
||||||
|
val=dict(pipeline=test_pipeline),
|
||||||
|
test=dict(pipeline=test_pipeline))
|
||||||
|
|
||||||
|
# optimizer
|
||||||
|
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=4e-5)
|
||||||
|
optimizer_config = dict()
|
||||||
|
# learning policy
|
||||||
|
lr_config = dict(
|
||||||
|
policy='poly',
|
||||||
|
power=0.9,
|
||||||
|
by_epoch=False,
|
||||||
|
)
|
||||||
|
# runtime settings
|
||||||
|
# total_epochs = 1000
|
||||||
|
total_iters = 80000
|
||||||
|
evaluation = dict(interval=8000, metric='mIoU')
|
||||||
|
checkpoint_config = dict(interval=8000)
|
||||||
|
|
4
configs_unify/fcnnet/fcn_r101_40ki_cityscapes.py
Normal file
4
configs_unify/fcnnet/fcn_r101_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './fcn_r50_40ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/fcnnet/fcn_r101_60ki_cityscapes.py
Normal file
4
configs_unify/fcnnet/fcn_r101_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './fcn_r50_60ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/fcnnet/fcn_r50_40ki_cityscapes.py
Normal file
4
configs_unify/fcnnet/fcn_r50_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/fcn_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||||
|
]
|
4
configs_unify/fcnnet/fcn_r50_60ki_cityscapes.py
Normal file
4
configs_unify/fcnnet/fcn_r50_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/fcn_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||||
|
]
|
4
configs_unify/gcnet/gc_r101_40ki_cityscapes.py
Normal file
4
configs_unify/gcnet/gc_r101_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './gc_r50_40ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/gcnet/gc_r101_60ki_cityscapes.py
Normal file
4
configs_unify/gcnet/gc_r101_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './gc_r50_60ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/gcnet/gc_r50_40ki_cityscapes.py
Normal file
4
configs_unify/gcnet/gc_r50_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/gc_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||||
|
]
|
4
configs_unify/gcnet/gc_r50_60ki_cityscapes.py
Normal file
4
configs_unify/gcnet/gc_r50_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/gc_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||||
|
]
|
63
configs_unify/hrnet/fcn_hr18_4x3_484e_cityscapes.py
Normal file
63
configs_unify/hrnet/fcn_hr18_4x3_484e_cityscapes.py
Normal file
@ -0,0 +1,63 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/fcn_hr18.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py'
|
||||||
|
]
|
||||||
|
model = dict(
|
||||||
|
decode_head=dict(classes_weight=[
|
||||||
|
0.8373, 0.918, 0.866, 1.0345, 1.0166, 0.9969, 0.9754, 1.0489, 0.8786,
|
||||||
|
1.0023, 0.9539, 0.9843, 1.1116, 0.9037, 1.0865, 1.0955, 1.0865, 1.1529,
|
||||||
|
1.0507
|
||||||
|
]))
|
||||||
|
crop_size = (512, 1024)
|
||||||
|
cudnn_benchmark = True
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='whole')
|
||||||
|
|
||||||
|
img_norm_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||||
|
train_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(type='LoadAnnotations', with_seg=True),
|
||||||
|
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
||||||
|
dict(type='RandomFlip', flip_ratio=0.5),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='RandomCrop', crop_size=crop_size),
|
||||||
|
dict(type='DefaultFormatBundle'),
|
||||||
|
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||||
|
]
|
||||||
|
test_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(
|
||||||
|
type='MultiScaleFlipAug',
|
||||||
|
img_scale=(2048, 1024),
|
||||||
|
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||||
|
flip=False,
|
||||||
|
transforms=[
|
||||||
|
dict(type='Resize', keep_ratio=True),
|
||||||
|
dict(type='RandomFlip'),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='ImageToTensor', keys=['img']),
|
||||||
|
dict(type='Collect', keys=['img']),
|
||||||
|
])
|
||||||
|
]
|
||||||
|
data = dict(
|
||||||
|
samples_per_gpu=3,
|
||||||
|
workers_per_gpu=3,
|
||||||
|
train=dict(pipeline=train_pipeline),
|
||||||
|
val=dict(pipeline=test_pipeline),
|
||||||
|
test=dict(pipeline=test_pipeline))
|
||||||
|
|
||||||
|
# optimizer
|
||||||
|
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||||
|
optimizer_config = dict()
|
||||||
|
# learning policy
|
||||||
|
lr_config = dict(
|
||||||
|
policy='poly',
|
||||||
|
power=0.9,
|
||||||
|
by_epoch=False,
|
||||||
|
)
|
||||||
|
# runtime settings
|
||||||
|
total_epochs = 484
|
||||||
|
evaluation = dict(interval=11, metric='mIoU')
|
||||||
|
checkpoint_config = dict(interval=11)
|
9
configs_unify/hrnet/fcn_hr18s_4x3_484e_cityscapes.py
Normal file
9
configs_unify/hrnet/fcn_hr18s_4x3_484e_cityscapes.py
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
_base_ = './fcn_hr18_4x3_484e_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/hrnetv2_w18_small-b5a04e21.pth',
|
||||||
|
backbone=dict(
|
||||||
|
extra=dict(
|
||||||
|
stage1=dict(num_blocks=(2, )),
|
||||||
|
stage2=dict(num_blocks=(2, 2)),
|
||||||
|
stage3=dict(num_modules=3, num_blocks=(2, 2, 2)),
|
||||||
|
stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2)))))
|
10
configs_unify/hrnet/fcn_hr32_4x3_484e_cityscapes.py
Normal file
10
configs_unify/hrnet/fcn_hr32_4x3_484e_cityscapes.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
_base_ = './fcn_hr18_4x3_484e_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='open-mmlab://msra/hrnetv2_w32',
|
||||||
|
backbone=dict(
|
||||||
|
extra=dict(
|
||||||
|
stage2=dict(num_channels=(32, 64)),
|
||||||
|
stage3=dict(num_channels=(32, 64, 128)),
|
||||||
|
stage4=dict(num_channels=(32, 64, 128, 256)))),
|
||||||
|
decode_head=dict(
|
||||||
|
in_channels=[32, 64, 128, 256], channels=sum([32, 64, 128, 256])))
|
10
configs_unify/hrnet/fcn_hr40_4x3_484e_cityscapes.py
Normal file
10
configs_unify/hrnet/fcn_hr40_4x3_484e_cityscapes.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
_base_ = './fcn_hr18_4x3_484e_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='open-mmlab://msra/hrnetv2_w40',
|
||||||
|
backbone=dict(
|
||||||
|
extra=dict(
|
||||||
|
stage2=dict(num_channels=(40, 80)),
|
||||||
|
stage3=dict(num_channels=(40, 80, 160)),
|
||||||
|
stage4=dict(num_channels=(40, 80, 160, 320)))),
|
||||||
|
decode_head=dict(
|
||||||
|
in_channels=[40, 80, 160, 320], channels=sum([40, 80, 160, 320])))
|
68
configs_unify/hrnet/fcn_hr48_484e_pascal_context.py
Normal file
68
configs_unify/hrnet/fcn_hr48_484e_pascal_context.py
Normal file
@ -0,0 +1,68 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/fcn_hr18.py', '../_base_/datasets/pascal_context.py',
|
||||||
|
'../_base_/default_runtime.py'
|
||||||
|
]
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/hrnetv2_w48-d2186c55.pth',
|
||||||
|
backbone=dict(
|
||||||
|
extra=dict(
|
||||||
|
stage2=dict(num_channels=(48, 96)),
|
||||||
|
stage3=dict(num_channels=(48, 96, 192)),
|
||||||
|
stage4=dict(num_channels=(48, 96, 192, 384)))),
|
||||||
|
decode_head=dict(
|
||||||
|
num_classes=60,
|
||||||
|
in_channels=[48, 96, 192, 384],
|
||||||
|
channels=sum([48, 96, 192, 384])))
|
||||||
|
crop_size = (480, 480)
|
||||||
|
cudnn_benchmark = True
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='whole')
|
||||||
|
|
||||||
|
img_norm_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||||
|
train_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(type='LoadAnnotations', with_seg=True),
|
||||||
|
dict(type='Resize', img_scale=(520, 520), ratio_range=(0.5, 2.0)),
|
||||||
|
dict(type='RandomFlip', flip_ratio=0.5),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='RandomCrop', crop_size=crop_size),
|
||||||
|
dict(type='DefaultFormatBundle'),
|
||||||
|
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||||
|
]
|
||||||
|
test_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(
|
||||||
|
type='MultiScaleFlipAug',
|
||||||
|
img_scale=(480, 480),
|
||||||
|
img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0],
|
||||||
|
flip=True,
|
||||||
|
transforms=[
|
||||||
|
dict(type='Resize', keep_ratio=True),
|
||||||
|
dict(type='RandomFlip'),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='ImageToTensor', keys=['img']),
|
||||||
|
dict(type='Collect', keys=['img']),
|
||||||
|
])
|
||||||
|
]
|
||||||
|
data = dict(
|
||||||
|
samples_per_gpu=4,
|
||||||
|
workers_per_gpu=4,
|
||||||
|
train=dict(pipeline=train_pipeline),
|
||||||
|
val=dict(pipeline=test_pipeline),
|
||||||
|
test=dict(pipeline=test_pipeline))
|
||||||
|
|
||||||
|
# optimizer
|
||||||
|
optimizer = dict(type='SGD', lr=0.04, momentum=0.9, weight_decay=0.0001)
|
||||||
|
optimizer_config = dict()
|
||||||
|
# learning policy
|
||||||
|
lr_config = dict(
|
||||||
|
policy='poly',
|
||||||
|
power=0.9,
|
||||||
|
by_epoch=False,
|
||||||
|
)
|
||||||
|
# runtime settings
|
||||||
|
total_epochs = 200
|
||||||
|
evaluation = dict(interval=11, metric='mIoU')
|
||||||
|
checkpoint_config = dict(interval=10)
|
10
configs_unify/hrnet/fcn_hr48_4x3_484e_cityscapes.py
Normal file
10
configs_unify/hrnet/fcn_hr48_4x3_484e_cityscapes.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
_base_ = './fcn_hr18_4x3_484e_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/hrnetv2_w48-d2186c55.pth',
|
||||||
|
backbone=dict(
|
||||||
|
extra=dict(
|
||||||
|
stage2=dict(num_channels=(48, 96)),
|
||||||
|
stage3=dict(num_channels=(48, 96, 192)),
|
||||||
|
stage4=dict(num_channels=(48, 96, 192, 384)))),
|
||||||
|
decode_head=dict(
|
||||||
|
in_channels=[48, 96, 192, 384], channels=sum([48, 96, 192, 384])))
|
12
configs_unify/hrnet/fcn_hr48_ohem_4x3_484e_cityscapes.py
Normal file
12
configs_unify/hrnet/fcn_hr48_ohem_4x3_484e_cityscapes.py
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
_base_ = './fcn_hr18_4x3_484e_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/hrnetv2_w48-d2186c55.pth',
|
||||||
|
backbone=dict(
|
||||||
|
extra=dict(
|
||||||
|
stage2=dict(num_channels=(48, 96)),
|
||||||
|
stage3=dict(num_channels=(48, 96, 192)),
|
||||||
|
stage4=dict(num_channels=(48, 96, 192, 384)))),
|
||||||
|
decode_head=dict(
|
||||||
|
in_channels=[48, 96, 192, 384],
|
||||||
|
channels=sum([48, 96, 192, 384]),
|
||||||
|
sampler=dict(type='OHEMSegSampler', thresh=0.9, min_kept=131072)))
|
4
configs_unify/nlnet/nl_r101_40ki_cityscapes.py
Normal file
4
configs_unify/nlnet/nl_r101_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './nl_r50_40ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/nlnet/nl_r101_60ki_cityscapes.py
Normal file
4
configs_unify/nlnet/nl_r101_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './nl_r50_60ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/nlnet/nl_r50_40ki_cityscapes.py
Normal file
4
configs_unify/nlnet/nl_r50_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/nl_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||||
|
]
|
4
configs_unify/nlnet/nl_r50_60ki_cityscapes.py
Normal file
4
configs_unify/nlnet/nl_r50_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/nl_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||||
|
]
|
57
configs_unify/ocrnet/ocr_hr18_4x3_484e_cityscapes.py
Normal file
57
configs_unify/ocrnet/ocr_hr18_4x3_484e_cityscapes.py
Normal file
@ -0,0 +1,57 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/ocr_hr18.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py'
|
||||||
|
]
|
||||||
|
crop_size = (512, 1024)
|
||||||
|
cudnn_benchmark = True
|
||||||
|
# model training and testing settings
|
||||||
|
train_cfg = dict()
|
||||||
|
test_cfg = dict(mode='whole')
|
||||||
|
|
||||||
|
img_norm_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||||
|
train_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(type='LoadAnnotations', with_seg=True),
|
||||||
|
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
||||||
|
dict(type='RandomFlip', flip_ratio=0.5),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='RandomCrop', crop_size=crop_size),
|
||||||
|
dict(type='DefaultFormatBundle'),
|
||||||
|
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
||||||
|
]
|
||||||
|
test_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(
|
||||||
|
type='MultiScaleFlipAug',
|
||||||
|
img_scale=(2048, 1024),
|
||||||
|
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||||
|
flip=False,
|
||||||
|
transforms=[
|
||||||
|
dict(type='Resize', keep_ratio=True),
|
||||||
|
dict(type='RandomFlip'),
|
||||||
|
dict(type='Normalize', **img_norm_cfg),
|
||||||
|
dict(type='ImageToTensor', keys=['img']),
|
||||||
|
dict(type='Collect', keys=['img']),
|
||||||
|
])
|
||||||
|
]
|
||||||
|
data = dict(
|
||||||
|
samples_per_gpu=3,
|
||||||
|
workers_per_gpu=3,
|
||||||
|
train=dict(pipeline=train_pipeline),
|
||||||
|
val=dict(pipeline=test_pipeline),
|
||||||
|
test=dict(pipeline=test_pipeline))
|
||||||
|
|
||||||
|
# optimizer
|
||||||
|
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||||
|
optimizer_config = dict()
|
||||||
|
# learning policy
|
||||||
|
lr_config = dict(
|
||||||
|
policy='poly',
|
||||||
|
power=0.9,
|
||||||
|
by_epoch=False,
|
||||||
|
)
|
||||||
|
# runtime settings
|
||||||
|
total_epochs = 484
|
||||||
|
evaluation = dict(interval=11, metric='mIoU')
|
||||||
|
checkpoint_config = dict(interval=11)
|
10
configs_unify/ocrnet/ocr_hr18s_4x3_484e_cityscapes.py
Normal file
10
configs_unify/ocrnet/ocr_hr18s_4x3_484e_cityscapes.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
_base_ = './ocr_hr18_4x3_484e_cityscapes.py'
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/hrnetv2_w18_small-b5a04e21.pth',
|
||||||
|
backbone=dict(
|
||||||
|
extra=dict(
|
||||||
|
stage1=dict(num_blocks=(2, )),
|
||||||
|
stage2=dict(num_blocks=(2, 2)),
|
||||||
|
stage3=dict(num_modules=3, num_blocks=(2, 2, 2)),
|
||||||
|
stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2)))))
|
39
configs_unify/ocrnet/ocr_hr48_4x3_484e_cityscapes.py
Normal file
39
configs_unify/ocrnet/ocr_hr48_4x3_484e_cityscapes.py
Normal file
@ -0,0 +1,39 @@
|
|||||||
|
_base_ = './ocr_hr18_4x3_484e_cityscapes.py'
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/hrnetv2_w48-d2186c55.pth',
|
||||||
|
backbone=dict(
|
||||||
|
extra=dict(
|
||||||
|
stage2=dict(num_channels=(48, 96)),
|
||||||
|
stage3=dict(num_channels=(48, 96, 192)),
|
||||||
|
stage4=dict(num_channels=(48, 96, 192, 384)))),
|
||||||
|
decode_head=[
|
||||||
|
dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=[48, 96, 192, 384],
|
||||||
|
channels=sum([48, 96, 192, 384]),
|
||||||
|
input_transform='resize_concat',
|
||||||
|
in_index=(0, 1, 2, 3),
|
||||||
|
kernel_size=1,
|
||||||
|
num_convs=1,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
concat_input=False,
|
||||||
|
drop_out_ratio=-1,
|
||||||
|
num_classes=19,
|
||||||
|
align_corners=False,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||||||
|
dict(
|
||||||
|
type='OCRHead',
|
||||||
|
in_channels=[48, 96, 192, 384],
|
||||||
|
channels=512,
|
||||||
|
ocr_channels=256,
|
||||||
|
input_transform='resize_concat',
|
||||||
|
in_index=(0, 1, 2, 3),
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
drop_out_ratio=-1,
|
||||||
|
num_classes=19,
|
||||||
|
align_corners=False,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0))
|
||||||
|
])
|
40
configs_unify/ocrnet/ocr_hr48_ohem_4x3_484e_cityscapes.py
Normal file
40
configs_unify/ocrnet/ocr_hr48_ohem_4x3_484e_cityscapes.py
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
_base_ = './ocr_hr18_4x3_484e_cityscapes.py'
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/hrnetv2_w48-d2186c55.pth',
|
||||||
|
backbone=dict(
|
||||||
|
extra=dict(
|
||||||
|
stage2=dict(num_channels=(48, 96)),
|
||||||
|
stage3=dict(num_channels=(48, 96, 192)),
|
||||||
|
stage4=dict(num_channels=(48, 96, 192, 384)))),
|
||||||
|
decode_head=[
|
||||||
|
dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=[48, 96, 192, 384],
|
||||||
|
channels=sum([48, 96, 192, 384]),
|
||||||
|
input_transform='resize_concat',
|
||||||
|
in_index=(0, 1, 2, 3),
|
||||||
|
kernel_size=1,
|
||||||
|
num_convs=1,
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
concat_input=False,
|
||||||
|
drop_out_ratio=-1,
|
||||||
|
num_classes=19,
|
||||||
|
align_corners=False,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||||||
|
dict(
|
||||||
|
type='OCRHead',
|
||||||
|
in_channels=[48, 96, 192, 384],
|
||||||
|
channels=512,
|
||||||
|
ocr_channels=256,
|
||||||
|
input_transform='resize_concat',
|
||||||
|
in_index=(0, 1, 2, 3),
|
||||||
|
norm_cfg=norm_cfg,
|
||||||
|
drop_out_ratio=-1,
|
||||||
|
num_classes=19,
|
||||||
|
align_corners=False,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
||||||
|
sampler=dict(type='OHEMSegSampler', thresh=0.9, min_kept=131072))
|
||||||
|
])
|
4
configs_unify/psanet/psa_r101_40ki_cityscapes.py
Normal file
4
configs_unify/psanet/psa_r101_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './psa_r50_40ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/psanet/psa_r101_60ki_cityscapes.py
Normal file
4
configs_unify/psanet/psa_r101_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './psa_r50_60ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/psanet/psa_r50_40ki_cityscapes.py
Normal file
4
configs_unify/psanet/psa_r50_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/psa_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||||
|
]
|
4
configs_unify/psanet/psa_r50_60ki_cityscapes.py
Normal file
4
configs_unify/psanet/psa_r50_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/psa_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||||
|
]
|
4
configs_unify/pspnet/psp_r101_40ki_cityscapes.py
Normal file
4
configs_unify/pspnet/psp_r101_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './psp_r50_40ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/pspnet/psp_r101_60ki_cityscapes.py
Normal file
4
configs_unify/pspnet/psp_r101_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './psp_r50_60ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/pspnet/psp_r50_40ki_cityscapes.py
Normal file
4
configs_unify/pspnet/psp_r50_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/psp_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||||
|
]
|
4
configs_unify/pspnet/psp_r50_60ki_cityscapes.py
Normal file
4
configs_unify/pspnet/psp_r50_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/psp_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||||
|
]
|
4
configs_unify/upernet/uper_r101_40ki_cityscapes.py
Normal file
4
configs_unify/upernet/uper_r101_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './uper_r50_40ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/upernet/uper_r101_60ki_cityscapes.py
Normal file
4
configs_unify/upernet/uper_r101_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = './uper_r50_60ki_cityscapes.py'
|
||||||
|
model = dict(
|
||||||
|
pretrained='pretrain_model/resnet101_v1c-5fe8ded3.pth',
|
||||||
|
backbone=dict(depth=101))
|
4
configs_unify/upernet/uper_r50_40ki_cityscapes.py
Normal file
4
configs_unify/upernet/uper_r50_40ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/uper_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40ki.py'
|
||||||
|
]
|
4
configs_unify/upernet/uper_r50_60ki_cityscapes.py
Normal file
4
configs_unify/upernet/uper_r50_60ki_cityscapes.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
_base_ = [
|
||||||
|
'../_base_/models/uper_r50.py', '../_base_/datasets/cityscapes.py',
|
||||||
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_60ki.py'
|
||||||
|
]
|
Loading…
x
Reference in New Issue
Block a user