[Project] Medical semantic seg dataset: Pcam (#2684)
parent
942b054426
commit
30e3b49b0b
|
@ -0,0 +1,153 @@
|
|||
# PCam (PatchCamelyon)
|
||||
|
||||
## Description
|
||||
|
||||
This project supports **`Patch Camelyon (PCam) `**, which can be downloaded from [here](https://opendatalab.com/PCam).
|
||||
|
||||
### Dataset Overview
|
||||
|
||||
PatchCamelyon is an image classification dataset. It consists of 327680 color images (96 x 96px) extracted from histopathologic scans of lymph node sections. Each image is annotated with a binary label indicating presence of metastatic tissue. PCam provides a new benchmark for machine learning models: bigger than CIFAR10, smaller than ImageNet, trainable on a single GPU.
|
||||
|
||||
### Statistic Information
|
||||
|
||||
| Dataset Name | Anatomical Region | Task Type | Modality | Num. Classes | Train/Val/Test images | Train/Val/Test Labeled | Release Date | License |
|
||||
| ------------------------------------ | ----------------- | ------------ | -------------- | ------------ | --------------------- | ---------------------- | ------------ | ------------------------------------------------------------- |
|
||||
| [Pcam](https://opendatalab.com/PCam) | throax | segmentation | histopathology | 2 | 327680/-/- | yes/-/- | 2018 | [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/) |
|
||||
|
||||
| Class Name | Num. Train | Pct. Train | Num. Val | Pct. Val | Num. Test | Pct. Test |
|
||||
| :---------------: | :--------: | :--------: | :------: | :------: | :-------: | :-------: |
|
||||
| background | 214849 | 63.77 | - | - | - | - |
|
||||
| metastatic tissue | 131832 | 36.22 | - | - | - | - |
|
||||
|
||||
Note:
|
||||
|
||||
- `Pct` means percentage of pixels in this category in all pixels.
|
||||
|
||||
### Visualization
|
||||
|
||||

|
||||
|
||||
### Dataset Citation
|
||||
|
||||
```
|
||||
@inproceedings{veeling2018rotation,
|
||||
title={Rotation equivariant CNNs for digital pathology},
|
||||
author={Veeling, Bastiaan S and Linmans, Jasper and Winkens, Jim and Cohen, Taco and Welling, Max},
|
||||
booktitle={International Conference on Medical image computing and computer-assisted intervention},
|
||||
pages={210--218},
|
||||
year={2018},
|
||||
}
|
||||
```
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- Python v3.8
|
||||
- PyTorch v1.10.0
|
||||
- pillow(PIL) v9.3.0 9.3.0
|
||||
- scikit-learn(sklearn) v1.2.0 1.2.0
|
||||
- [MIM](https://github.com/open-mmlab/mim) v0.3.4
|
||||
- [MMCV](https://github.com/open-mmlab/mmcv) v2.0.0rc4
|
||||
- [MMEngine](https://github.com/open-mmlab/mmengine) v0.2.0 or higher
|
||||
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation) v1.0.0rc5
|
||||
|
||||
All the commands below rely on the correct configuration of `PYTHONPATH`, which should point to the project's directory so that Python can locate the module files. In `pcam/` root directory, run the following line to add the current directory to `PYTHONPATH`:
|
||||
|
||||
```shell
|
||||
export PYTHONPATH=`pwd`:$PYTHONPATH
|
||||
```
|
||||
|
||||
### Dataset Preparing
|
||||
|
||||
- download dataset from [here](https://opendatalab.com/PCam) and decompress data to path `'data/'`.
|
||||
- run script `"python tools/prepare_dataset.py"` to format data and change folder structure as below.
|
||||
- run script `"python ../../tools/split_seg_dataset.py"` to split dataset and generate `train.txt`, `val.txt` and `test.txt`. If the label of official validation set and test set cannot be obtained, we generate `train.txt` and `val.txt` from the training set randomly.
|
||||
|
||||
```shell
|
||||
mkdir data & cd data
|
||||
pip install opendatalab
|
||||
odl get PCam
|
||||
mv ./PCam/raw/pcamv1 ./
|
||||
rm -rf PCam
|
||||
cd ..
|
||||
python tools/prepare_dataset.py
|
||||
python ../../tools/split_seg_dataset.py
|
||||
```
|
||||
|
||||
```none
|
||||
mmsegmentation
|
||||
├── mmseg
|
||||
├── projects
|
||||
│ ├── medical
|
||||
│ │ ├── 2d_image
|
||||
│ │ │ ├── histopathology
|
||||
│ │ │ │ ├── pcam
|
||||
│ │ │ │ │ ├── configs
|
||||
│ │ │ │ │ ├── datasets
|
||||
│ │ │ │ │ ├── tools
|
||||
│ │ │ │ │ ├── data
|
||||
│ │ │ │ │ │ ├── train.txt
|
||||
│ │ │ │ │ │ ├── val.txt
|
||||
│ │ │ │ │ │ ├── images
|
||||
│ │ │ │ │ │ │ ├── train
|
||||
│ │ │ │ | │ │ │ ├── xxx.png
|
||||
│ │ │ │ | │ │ │ ├── ...
|
||||
│ │ │ │ | │ │ │ └── xxx.png
|
||||
│ │ │ │ │ │ ├── masks
|
||||
│ │ │ │ │ │ │ ├── train
|
||||
│ │ │ │ | │ │ │ ├── xxx.png
|
||||
│ │ │ │ | │ │ │ ├── ...
|
||||
│ │ │ │ | │ │ │ └── xxx.png
|
||||
```
|
||||
|
||||
### Divided Dataset Information
|
||||
|
||||
***Note: The table information below is divided by ourselves.***
|
||||
|
||||
| Class Name | Num. Train | Pct. Train | Num. Val | Pct. Val | Num. Test | Pct. Test |
|
||||
| :---------------: | :--------: | :--------: | :------: | :------: | :-------: | :-------: |
|
||||
| background | 171948 | 63.82 | 42901 | 63.6 | - | - |
|
||||
| metastatic tissue | 105371 | 36.18 | 26461 | 36.4 | - | - |
|
||||
|
||||
### Training commands
|
||||
|
||||
To train models on a single server with one GPU. (default)
|
||||
|
||||
```shell
|
||||
mim train mmseg ./configs/${CONFIG_FILE}
|
||||
```
|
||||
|
||||
### Testing commands
|
||||
|
||||
To test models on a single server with one GPU. (default)
|
||||
|
||||
```shell
|
||||
mim test mmseg ./configs/${CONFIG_FILE} --checkpoint ${CHECKPOINT_PATH}
|
||||
```
|
||||
|
||||
<!-- List the results as usually done in other model's README. [Example](https://github.com/open-mmlab/mmsegmentation/tree/dev-1.x/configs/fcn#results-and-models)
|
||||
|
||||
You should claim whether this is based on the pre-trained weights, which are converted from the official release; or it's a reproduced result obtained from retraining the model in this project. -->
|
||||
|
||||
## Checklist
|
||||
|
||||
- [x] Milestone 1: PR-ready, and acceptable to be one of the `projects/`.
|
||||
|
||||
- [x] Finish the code
|
||||
- [x] Basic docstrings & proper citation
|
||||
- [ ] Test-time correctness
|
||||
- [x] A full README
|
||||
|
||||
- [ ] Milestone 2: Indicates a successful model implementation.
|
||||
|
||||
- [ ] Training-time correctness
|
||||
|
||||
- [ ] Milestone 3: Good to be a part of our core package!
|
||||
|
||||
- [ ] Type hints and docstrings
|
||||
- [ ] Unit tests
|
||||
- [ ] Code polishing
|
||||
- [ ] Metafile.yml
|
||||
|
||||
- [ ] Move your modules into the core package following the codebase's file hierarchy structure.
|
||||
|
||||
- [ ] Refactor your modules into the core package following the codebase's file hierarchy structure.
|
|
@ -0,0 +1,17 @@
|
|||
_base_ = [
|
||||
'mmseg::_base_/models/fcn_unet_s5-d16.py', './pcam_512x512.py',
|
||||
'mmseg::_base_/default_runtime.py',
|
||||
'mmseg::_base_/schedules/schedule_20k.py'
|
||||
]
|
||||
custom_imports = dict(imports='datasets.pcam_dataset')
|
||||
img_scale = (512, 512)
|
||||
data_preprocessor = dict(size=img_scale)
|
||||
optimizer = dict(lr=0.0001)
|
||||
optim_wrapper = dict(optimizer=optimizer)
|
||||
model = dict(
|
||||
data_preprocessor=data_preprocessor,
|
||||
decode_head=dict(num_classes=2),
|
||||
auxiliary_head=None,
|
||||
test_cfg=dict(mode='whole', _delete_=True))
|
||||
vis_backends = None
|
||||
visualizer = dict(vis_backends=vis_backends)
|
|
@ -0,0 +1,17 @@
|
|||
_base_ = [
|
||||
'mmseg::_base_/models/fcn_unet_s5-d16.py', './pcam_512x512.py',
|
||||
'mmseg::_base_/default_runtime.py',
|
||||
'mmseg::_base_/schedules/schedule_20k.py'
|
||||
]
|
||||
custom_imports = dict(imports='datasets.pcam_dataset')
|
||||
img_scale = (512, 512)
|
||||
data_preprocessor = dict(size=img_scale)
|
||||
optimizer = dict(lr=0.001)
|
||||
optim_wrapper = dict(optimizer=optimizer)
|
||||
model = dict(
|
||||
data_preprocessor=data_preprocessor,
|
||||
decode_head=dict(num_classes=2),
|
||||
auxiliary_head=None,
|
||||
test_cfg=dict(mode='whole', _delete_=True))
|
||||
vis_backends = None
|
||||
visualizer = dict(vis_backends=vis_backends)
|
|
@ -0,0 +1,17 @@
|
|||
_base_ = [
|
||||
'mmseg::_base_/models/fcn_unet_s5-d16.py', './pcam_512x512.py',
|
||||
'mmseg::_base_/default_runtime.py',
|
||||
'mmseg::_base_/schedules/schedule_20k.py'
|
||||
]
|
||||
custom_imports = dict(imports='datasets.pcam_dataset')
|
||||
img_scale = (512, 512)
|
||||
data_preprocessor = dict(size=img_scale)
|
||||
optimizer = dict(lr=0.01)
|
||||
optim_wrapper = dict(optimizer=optimizer)
|
||||
model = dict(
|
||||
data_preprocessor=data_preprocessor,
|
||||
decode_head=dict(num_classes=2),
|
||||
auxiliary_head=None,
|
||||
test_cfg=dict(mode='whole', _delete_=True))
|
||||
vis_backends = None
|
||||
visualizer = dict(vis_backends=vis_backends)
|
|
@ -0,0 +1,18 @@
|
|||
_base_ = [
|
||||
'mmseg::_base_/models/fcn_unet_s5-d16.py', './pcam_512x512.py',
|
||||
'mmseg::_base_/default_runtime.py',
|
||||
'mmseg::_base_/schedules/schedule_20k.py'
|
||||
]
|
||||
custom_imports = dict(imports='datasets.pcam_dataset')
|
||||
img_scale = (512, 512)
|
||||
data_preprocessor = dict(size=img_scale)
|
||||
optimizer = dict(lr=0.01)
|
||||
optim_wrapper = dict(optimizer=optimizer)
|
||||
model = dict(
|
||||
data_preprocessor=data_preprocessor,
|
||||
decode_head=dict(
|
||||
num_classes=2, loss_decode=dict(use_sigmoid=True), out_channels=1),
|
||||
auxiliary_head=None,
|
||||
test_cfg=dict(mode='whole', _delete_=True))
|
||||
vis_backends = None
|
||||
visualizer = dict(vis_backends=vis_backends)
|
|
@ -0,0 +1,42 @@
|
|||
dataset_type = 'PCamDataset'
|
||||
data_root = 'data/'
|
||||
img_scale = (512, 512)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations'),
|
||||
dict(type='Resize', scale=img_scale, keep_ratio=False),
|
||||
dict(type='RandomFlip', prob=0.5),
|
||||
dict(type='PhotoMetricDistortion'),
|
||||
dict(type='PackSegInputs')
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='Resize', scale=img_scale, keep_ratio=False),
|
||||
dict(type='LoadAnnotations'),
|
||||
dict(type='PackSegInputs')
|
||||
]
|
||||
train_dataloader = dict(
|
||||
batch_size=16,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='InfiniteSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='train.txt',
|
||||
data_prefix=dict(img_path='images/', seg_map_path='masks/'),
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='val.txt',
|
||||
data_prefix=dict(img_path='images/', seg_map_path='masks/'),
|
||||
pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU', 'mDice'])
|
||||
test_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU', 'mDice'])
|
|
@ -0,0 +1,31 @@
|
|||
from mmseg.datasets import BaseSegDataset
|
||||
from mmseg.registry import DATASETS
|
||||
|
||||
|
||||
@DATASETS.register_module()
|
||||
class PCamDataset(BaseSegDataset):
|
||||
"""PCamDataset dataset.
|
||||
|
||||
In segmentation map annotation for PCamDataset,
|
||||
0 stands for background, which is included in 2 categories.
|
||||
``reduce_zero_label`` is fixed to False. The ``img_suffix``
|
||||
is fixed to '.png' and ``seg_map_suffix`` is fixed to '.png'.
|
||||
|
||||
Args:
|
||||
img_suffix (str): Suffix of images. Default: '.png'
|
||||
seg_map_suffix (str): Suffix of segmentation maps. Default: '.png'
|
||||
reduce_zero_label (bool): Whether to mark label zero as ignored.
|
||||
Default to False.
|
||||
"""
|
||||
METAINFO = dict(classes=('background', 'metastatic tissue'))
|
||||
|
||||
def __init__(self,
|
||||
img_suffix='.png',
|
||||
seg_map_suffix='.png',
|
||||
reduce_zero_label=False,
|
||||
**kwargs) -> None:
|
||||
super().__init__(
|
||||
img_suffix=img_suffix,
|
||||
seg_map_suffix=seg_map_suffix,
|
||||
reduce_zero_label=reduce_zero_label,
|
||||
**kwargs)
|
|
@ -0,0 +1,49 @@
|
|||
import os
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
root_path = 'data/'
|
||||
|
||||
tgt_img_train_dir = os.path.join(root_path, 'images/train/')
|
||||
tgt_mask_train_dir = os.path.join(root_path, 'masks/train/')
|
||||
tgt_img_val_dir = os.path.join(root_path, 'images/val/')
|
||||
tgt_img_test_dir = os.path.join(root_path, 'images/test/')
|
||||
|
||||
os.system('mkdir -p ' + tgt_img_train_dir)
|
||||
os.system('mkdir -p ' + tgt_mask_train_dir)
|
||||
os.system('mkdir -p ' + tgt_img_val_dir)
|
||||
os.system('mkdir -p ' + tgt_img_test_dir)
|
||||
|
||||
|
||||
def extract_pics_from_h5(h5_path, h5_key, save_dir):
|
||||
f = h5py.File(h5_path, 'r')
|
||||
for i, img in enumerate(f[h5_key]):
|
||||
img = img.astype(np.uint8).squeeze()
|
||||
img = Image.fromarray(img)
|
||||
save_image_path = os.path.join(save_dir, str(i).zfill(8) + '.png')
|
||||
img.save(save_image_path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
extract_pics_from_h5(
|
||||
'data/pcamv1/camelyonpatch_level_2_split_train_x.h5',
|
||||
h5_key='x',
|
||||
save_dir=tgt_img_train_dir)
|
||||
|
||||
extract_pics_from_h5(
|
||||
'data/pcamv1/camelyonpatch_level_2_split_valid_x.h5',
|
||||
h5_key='x',
|
||||
save_dir=tgt_img_val_dir)
|
||||
|
||||
extract_pics_from_h5(
|
||||
'data/pcamv1/camelyonpatch_level_2_split_test_x.h5',
|
||||
h5_key='x',
|
||||
save_dir=tgt_img_test_dir)
|
||||
|
||||
extract_pics_from_h5(
|
||||
'data/pcamv1/camelyonpatch_level_2_split_train_mask.h5',
|
||||
h5_key='mask',
|
||||
save_dir=tgt_mask_train_dir)
|
|
@ -69,7 +69,7 @@ pip install opendatalab
|
|||
odl get 2-PM_Vessel_Dataset
|
||||
cd ..
|
||||
python tools/prepare_dataset.py
|
||||
python tools/prepare_dataset.py
|
||||
python ../../tools/split_seg_dataset.py
|
||||
```
|
||||
|
||||
```none
|
||||
|
|
Loading…
Reference in New Issue