mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Fix] Fix batch size of val_dataloader to 1.
This commit is contained in:
parent
a0fe318451
commit
34711422ac
@ -28,7 +28,7 @@ train_dataloader = dict(
|
||||
img_path='images/training', seg_map_path='annotations/training'),
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -28,7 +28,7 @@ train_dataloader = dict(
|
||||
img_path='images/training', seg_map_path='annotations/training'),
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -32,7 +32,7 @@ train_dataloader = dict(
|
||||
img_path='images/training', seg_map_path='annotations/training'),
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -28,7 +28,7 @@ train_dataloader = dict(
|
||||
img_path='leftImg8bit/train', seg_map_path='gtFine/train'),
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -29,7 +29,7 @@ train_dataloader = dict(
|
||||
img_path='images/train2014', seg_map_path='annotations/train2014'),
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -28,7 +28,7 @@ train_dataloader = dict(
|
||||
img_path='images/train2017', seg_map_path='annotations/val2017'),
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -31,7 +31,7 @@ train_dataloader = dict(
|
||||
img_path='images/training', seg_map_path='annotations/training'),
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -31,7 +31,7 @@ train_dataloader = dict(
|
||||
img_path='images/training', seg_map_path='annotations/training'),
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -35,7 +35,7 @@ train_dataloader = dict(
|
||||
img_path='img_dir/train', seg_map_path='ann_dir/train'),
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -28,7 +28,7 @@ train_dataloader = dict(
|
||||
img_path='img_dir/train', seg_map_path='ann_dir/train'),
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -32,7 +32,7 @@ train_dataloader = dict(
|
||||
ann_file='ImageSets/SegmentationContext/train.txt',
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -32,7 +32,7 @@ train_dataloader = dict(
|
||||
ann_file='ImageSets/SegmentationContext/train.txt',
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -29,7 +29,7 @@ train_dataloader = dict(
|
||||
ann_file='ImageSets/Segmentation/train.txt',
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -28,7 +28,7 @@ train_dataloader = dict(
|
||||
img_path='img_dir/train', seg_map_path='ann_dir/train'),
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -31,7 +31,7 @@ train_dataloader = dict(
|
||||
img_path='images/training', seg_map_path='annotations/training'),
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -28,7 +28,7 @@ train_dataloader = dict(
|
||||
img_path='img_dir/train', seg_map_path='ann_dir/train'),
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=4,
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
|
@ -9,5 +9,5 @@ test_pipeline = [
|
||||
dict(type='Resize', scale=(2560, 640), keep_ratio=True),
|
||||
dict(type='PackSegInputs'),
|
||||
]
|
||||
val_dataloader = dict(batch_size=2, dataset=dict(pipeline=test_pipeline))
|
||||
val_dataloader = dict(batch_size=1, dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -37,5 +37,5 @@ param_scheduler = [
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -31,5 +31,5 @@ param_scheduler = [
|
||||
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -20,5 +20,5 @@ param_scheduler = [
|
||||
optimizer = dict(type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -25,5 +25,5 @@ param_scheduler = [
|
||||
optimizer = dict(type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -1,4 +1,4 @@
|
||||
_base_ = './bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py'
|
||||
train_dataloader = dict(batch_size=8, num_workers=4)
|
||||
val_dataloader = dict(batch_size=8, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -26,5 +26,5 @@ param_scheduler = [
|
||||
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -51,5 +51,5 @@ param_scheduler = [
|
||||
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -31,5 +31,5 @@ param_scheduler = [
|
||||
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -20,5 +20,5 @@ param_scheduler = [
|
||||
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -20,5 +20,5 @@ param_scheduler = [
|
||||
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=8, num_workers=4)
|
||||
val_dataloader = dict(batch_size=8, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -79,5 +79,5 @@ param_scheduler = [
|
||||
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -29,5 +29,5 @@ preprocess_cfg = dict(size=crop_size)
|
||||
model = dict(preprocess_cfg=preprocess_cfg)
|
||||
|
||||
train_dataloader = dict(batch_size=8)
|
||||
val_dataloader = dict(batch_size=8)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -43,5 +43,5 @@ test_pipeline = [
|
||||
train_dataloader = dict(
|
||||
batch_size=8, num_workers=4, dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=8, num_workers=4, dataset=dict(pipeline=test_pipeline))
|
||||
batch_size=1, num_workers=4, dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -43,7 +43,7 @@ param_scheduler = [
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
default_hooks = dict(
|
||||
|
@ -58,7 +58,7 @@ param_scheduler = [
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
default_hooks = dict(
|
||||
|
@ -58,7 +58,7 @@ param_scheduler = [
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
default_hooks = dict(
|
||||
|
@ -57,7 +57,7 @@ param_scheduler = [
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
default_hooks = dict(
|
||||
|
@ -57,7 +57,7 @@ param_scheduler = [
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
default_hooks = dict(
|
||||
|
@ -58,7 +58,7 @@ param_scheduler = [
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
default_hooks = dict(
|
||||
|
@ -39,5 +39,5 @@ param_scheduler = [
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -6,5 +6,5 @@ crop_size = (512, 1024)
|
||||
preprocess_cfg = dict(size=crop_size)
|
||||
model = dict(preprocess_cfg=preprocess_cfg)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -1,5 +1,5 @@
|
||||
# model settings
|
||||
_base_ = './fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes.py'
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -1,5 +1,5 @@
|
||||
# model settings
|
||||
_base_ = './fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes.py'
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -7,5 +7,5 @@ crop_size = (512, 1024)
|
||||
preprocess_cfg = dict(size=crop_size)
|
||||
model = dict(preprocess_cfg=preprocess_cfg)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -7,7 +7,7 @@ preprocess_cfg = dict(size=crop_size)
|
||||
model = dict(preprocess_cfg=preprocess_cfg)
|
||||
# Re-config the data sampler.
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
# Re-config the optimizer.
|
||||
|
@ -102,5 +102,5 @@ param_scheduler = [
|
||||
]
|
||||
# In K-Net implementation we use batch size 2 per GPU as default
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -102,5 +102,5 @@ param_scheduler = [
|
||||
]
|
||||
# In K-Net implementation we use batch size 2 per GPU as default
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -101,5 +101,5 @@ param_scheduler = [
|
||||
]
|
||||
# In K-Net implementation we use batch size 2 per GPU as default
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -102,5 +102,5 @@ param_scheduler = [
|
||||
]
|
||||
# In K-Net implementation we use batch size 2 per GPU as default
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -17,5 +17,5 @@ model = dict(
|
||||
auxiliary_head=dict(in_channels=768))
|
||||
# In K-Net implementation we use batch size 2 per GPU as default
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -39,5 +39,5 @@ val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
# In K-Net implementation we use batch size 2 per GPU as default
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -68,5 +68,5 @@ param_scheduler = [
|
||||
]
|
||||
# In K-Net implementation we use batch size 2 per GPU as default
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -9,5 +9,5 @@ test_pipeline = [
|
||||
dict(type='Resize', scale=(2048, 512), keep_ratio=True),
|
||||
dict(type='PackSegInputs')
|
||||
]
|
||||
val_dataloader = dict(batch_size=2, dataset=dict(pipeline=test_pipeline))
|
||||
val_dataloader = dict(batch_size=1, dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -55,5 +55,5 @@ fp16 = dict(loss_scale='dynamic')
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -10,7 +10,7 @@ model = dict(
|
||||
|
||||
# Re-config the data sampler.
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
runner = dict(type='IterBasedRunner', max_iters=320000)
|
||||
|
@ -7,7 +7,7 @@ preprocess_cfg = dict(size=crop_size)
|
||||
# Re-config the data sampler.
|
||||
model = dict(preprocess_cfg=preprocess_cfg)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
runner = dict(type='IterBasedRunner', max_iters=320000)
|
||||
|
@ -40,5 +40,5 @@ param_scheduler = [
|
||||
)
|
||||
]
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -42,6 +42,6 @@ param_scheduler = [
|
||||
)
|
||||
]
|
||||
|
||||
train_dataloader = dict(batch_size=1, num_workers=1)
|
||||
val_dataloader = dict(batch_size=1, num_workers=1)
|
||||
train_dataloader = dict(batch_size=1, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -2,5 +2,5 @@ _base_ = ['./setr_mla_512x512_160k_b8_ade20k.py']
|
||||
|
||||
# num_gpus: 8 -> batch_size: 16
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -68,5 +68,5 @@ optimizer = dict(
|
||||
|
||||
# num_gpus: 8 -> batch_size: 16
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -68,5 +68,5 @@ optimizer = dict(
|
||||
|
||||
# num_gpus: 8 -> batch_size: 16
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -17,5 +17,5 @@ param_scheduler = [
|
||||
)
|
||||
]
|
||||
train_dataloader = dict(batch_size=12, num_workers=4)
|
||||
val_dataloader = dict(batch_size=12, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -53,5 +53,5 @@ param_scheduler = [
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -9,5 +9,5 @@ model = dict(
|
||||
drop_path_rate=0.3))
|
||||
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -9,5 +9,5 @@ model = dict(
|
||||
drop_path_rate=0.3))
|
||||
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -50,5 +50,5 @@ param_scheduler = [
|
||||
]
|
||||
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -12,5 +12,5 @@ model = dict(
|
||||
train_cfg=dict(),
|
||||
test_cfg=dict(mode='whole'))
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=1, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -46,5 +46,5 @@ param_scheduler = [
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -45,5 +45,5 @@ param_scheduler = [
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -45,5 +45,5 @@ param_scheduler = [
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
|
Loading…
x
Reference in New Issue
Block a user