[Enhancement] Add UPerNet r18 results (#1669)

* add r18 configs

* update r18 city result

* add configs

* update results

* rename files

* fix lint
pull/1653/head^2
谢昕辰 2022-06-21 10:47:30 +08:00 committed by GitHub
parent f2ea015920
commit 36984d98ba
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 164 additions and 0 deletions

View File

@ -40,10 +40,12 @@ Humans recognize the visual world at multiple levels: we effortlessly categorize
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| UPerNet | R-18 | 512x1024 | 40000 | 4.8 | 4.47 | 75.39 | 77.0 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r18_512x1024_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x1024_40k_cityscapes/upernet_r18_512x1024_40k_cityscapes_20220615_113231-12ee861d.pth) \|[log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x1024_40k_cityscapes/upernet_r18_512x1024_40k_cityscapes_20220615_113231.log.json) |
| UPerNet | R-50 | 512x1024 | 40000 | 6.4 | 4.25 | 77.10 | 78.37 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r50_512x1024_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827-aa54cb54.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827.log.json) |
| UPerNet | R-101 | 512x1024 | 40000 | 7.4 | 3.79 | 78.69 | 80.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r101_512x1024_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933-ebce3b10.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933.log.json) |
| UPerNet | R-50 | 769x769 | 40000 | 7.2 | 1.76 | 77.98 | 79.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r50_769x769_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048-92d21539.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048.log.json) |
| UPerNet | R-101 | 769x769 | 40000 | 8.4 | 1.56 | 79.03 | 80.77 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r101_769x769_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819-83c95d01.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819.log.json) |
| UPerNet | R-18 | 512x1024 | 80000 | - | - | 76.02 | 77.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r18_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x1024_80k_cityscapes/upernet_r18_512x1024_80k_cityscapes_20220614_110712-c89a9188.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x1024_80k_cityscapes/upernet_r18_512x1024_80k_cityscapes_20220614_110712.log.json) |
| UPerNet | R-50 | 512x1024 | 80000 | - | - | 78.19 | 79.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r50_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207-848beca8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207.log.json) |
| UPerNet | R-101 | 512x1024 | 80000 | - | - | 79.40 | 80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r101_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403-f05f2345.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403.log.json) |
| UPerNet | R-50 | 769x769 | 80000 | - | - | 79.39 | 80.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r50_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107-82ae7d15.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107.log.json) |
@ -53,8 +55,10 @@ Humans recognize the visual world at multiple levels: we effortlessly categorize
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| UPerNet | R-18 | 512x512 | 80000 | 6.6 | 24.76 | 38.76 | 39.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r18_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_80k_ade20k/upernet_r18_512x512_80k_ade20k_20220614_110319-22e81719.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_80k_ade20k/upernet_r18_512x512_80k_ade20k_20220614_110319.log.json) |
| UPerNet | R-50 | 512x512 | 80000 | 8.1 | 23.40 | 40.70 | 41.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r50_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127-ecc8377b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127.log.json) |
| UPerNet | R-101 | 512x512 | 80000 | 9.1 | 20.34 | 42.91 | 43.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r101_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117-32e4db94.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117.log.json) |
| UPerNet | R-18 | 512x512 | 160000 | - | - | 39.23 | 39.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r18_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_160k_ade20k/upernet_r18_512x512_160k_ade20k_20220615_113300-791c3f3e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_160k_ade20k/upernet_r18_512x512_160k_ade20k_20220615_113300.log.json) |
| UPerNet | R-50 | 512x512 | 160000 | - | - | 42.05 | 42.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r50_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328-8534de8d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328.log.json) |
| UPerNet | R-101 | 512x512 | 160000 | - | - | 43.82 | 44.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r101_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951-91b32684.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951.log.json) |
@ -62,7 +66,9 @@ Humans recognize the visual world at multiple levels: we effortlessly categorize
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| UPerNet | R-18 | 512x512 | 20000 | 4.8 | 25.80 | 72.9 | 74.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r18_512x512_20k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_20k_voc12aug/upernet_r18_512x512_20k_voc12aug_20220614_123910-ed66e455.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_20k_voc12aug/upernet_r18_512x512_20k_voc12aug_20220614_123910.log.json) |
| UPerNet | R-50 | 512x512 | 20000 | 6.4 | 23.17 | 74.82 | 76.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r50_512x512_20k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330-5b5890a7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330.log.json) |
| UPerNet | R-101 | 512x512 | 20000 | 7.5 | 19.98 | 77.10 | 78.29 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r101_512x512_20k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629-f14e7f27.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629.log.json) |
| UPerNet | R-18 | 512x512 | 40000 | - | - | 73.71 | 74.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r18_512x512_40k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_40k_voc12aug/upernet_r18_512x512_40k_voc12aug_20220614_153605-fafeb868.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_40k_voc12aug/upernet_r18_512x512_40k_voc12aug_20220614_153605.log.json) |
| UPerNet | R-50 | 512x512 | 40000 | - | - | 75.92 | 77.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r50_512x512_40k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257-ca9bcc6b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257.log.json) |
| UPerNet | R-101 | 512x512 | 40000 | - | - | 77.43 | 78.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/upernet/upernet_r101_512x512_40k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549-e26476ac.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549.log.json) |

View File

@ -15,6 +15,28 @@ Collections:
Converted From:
Code: https://github.com/CSAILVision/unifiedparsing
Models:
- Name: upernet_r18_512x1024_40k_cityscapes
In Collection: UPerNet
Metadata:
backbone: R-18
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 223.71
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 4.8
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 75.39
mIoU(ms+flip): 77.0
Config: configs/upernet/upernet_r18_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x1024_40k_cityscapes/upernet_r18_512x1024_40k_cityscapes_20220615_113231-12ee861d.pth
- Name: upernet_r50_512x1024_40k_cityscapes
In Collection: UPerNet
Metadata:
@ -103,6 +125,20 @@ Models:
mIoU(ms+flip): 80.77
Config: configs/upernet/upernet_r101_769x769_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819-83c95d01.pth
- Name: upernet_r18_512x1024_80k_cityscapes
In Collection: UPerNet
Metadata:
backbone: R-18
crop size: (512,1024)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 76.02
mIoU(ms+flip): 77.38
Config: configs/upernet/upernet_r18_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x1024_80k_cityscapes/upernet_r18_512x1024_80k_cityscapes_20220614_110712-c89a9188.pth
- Name: upernet_r50_512x1024_80k_cityscapes
In Collection: UPerNet
Metadata:
@ -159,6 +195,28 @@ Models:
mIoU(ms+flip): 81.49
Config: configs/upernet/upernet_r101_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014-082fc334.pth
- Name: upernet_r18_512x512_80k_ade20k
In Collection: UPerNet
Metadata:
backbone: R-18
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 40.39
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 6.6
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 38.76
mIoU(ms+flip): 39.81
Config: configs/upernet/upernet_r18_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_80k_ade20k/upernet_r18_512x512_80k_ade20k_20220614_110319-22e81719.pth
- Name: upernet_r50_512x512_80k_ade20k
In Collection: UPerNet
Metadata:
@ -203,6 +261,20 @@ Models:
mIoU(ms+flip): 43.96
Config: configs/upernet/upernet_r101_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117-32e4db94.pth
- Name: upernet_r18_512x512_160k_ade20k
In Collection: UPerNet
Metadata:
backbone: R-18
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 39.23
mIoU(ms+flip): 39.97
Config: configs/upernet/upernet_r18_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_160k_ade20k/upernet_r18_512x512_160k_ade20k_20220615_113300-791c3f3e.pth
- Name: upernet_r50_512x512_160k_ade20k
In Collection: UPerNet
Metadata:
@ -231,6 +303,28 @@ Models:
mIoU(ms+flip): 44.85
Config: configs/upernet/upernet_r101_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951-91b32684.pth
- Name: upernet_r18_512x512_20k_voc12aug
In Collection: UPerNet
Metadata:
backbone: R-18
crop size: (512,512)
lr schd: 20000
inference time (ms/im):
- value: 38.76
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 4.8
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 72.9
mIoU(ms+flip): 74.71
Config: configs/upernet/upernet_r18_512x512_20k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_20k_voc12aug/upernet_r18_512x512_20k_voc12aug_20220614_123910-ed66e455.pth
- Name: upernet_r50_512x512_20k_voc12aug
In Collection: UPerNet
Metadata:
@ -275,6 +369,20 @@ Models:
mIoU(ms+flip): 78.29
Config: configs/upernet/upernet_r101_512x512_20k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629-f14e7f27.pth
- Name: upernet_r18_512x512_40k_voc12aug
In Collection: UPerNet
Metadata:
backbone: R-18
crop size: (512,512)
lr schd: 40000
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 73.71
mIoU(ms+flip): 74.61
Config: configs/upernet/upernet_r18_512x512_40k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_40k_voc12aug/upernet_r18_512x512_40k_voc12aug_20220614_153605-fafeb868.pth
- Name: upernet_r50_512x512_40k_voc12aug
In Collection: UPerNet
Metadata:

View File

@ -0,0 +1,6 @@
_base_ = './upernet_r50_512x1024_40k_cityscapes.py'
model = dict(
pretrained='open-mmlab://resnet18_v1c',
backbone=dict(depth=18),
decode_head=dict(in_channels=[64, 128, 256, 512]),
auxiliary_head=dict(in_channels=256))

View File

@ -0,0 +1,6 @@
_base_ = './upernet_r50_512x1024_80k_cityscapes.py'
model = dict(
pretrained='open-mmlab://resnet18_v1c',
backbone=dict(depth=18),
decode_head=dict(in_channels=[64, 128, 256, 512]),
auxiliary_head=dict(in_channels=256))

View File

@ -0,0 +1,9 @@
_base_ = [
'../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
model = dict(
pretrained='open-mmlab://resnet18_v1c',
backbone=dict(depth=18),
decode_head=dict(in_channels=[64, 128, 256, 512], num_classes=150),
auxiliary_head=dict(in_channels=256, num_classes=150))

View File

@ -0,0 +1,10 @@
_base_ = [
'../_base_/models/upernet_r50.py',
'../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_20k.py'
]
model = dict(
pretrained='open-mmlab://resnet18_v1c',
backbone=dict(depth=18),
decode_head=dict(in_channels=[64, 128, 256, 512], num_classes=21),
auxiliary_head=dict(in_channels=256, num_classes=21))

View File

@ -0,0 +1,10 @@
_base_ = [
'../_base_/models/upernet_r50.py',
'../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_40k.py'
]
model = dict(
pretrained='open-mmlab://resnet18_v1c',
backbone=dict(depth=18),
decode_head=dict(in_channels=[64, 128, 256, 512], num_classes=21),
auxiliary_head=dict(in_channels=256, num_classes=21))

View File

@ -0,0 +1,9 @@
_base_ = [
'../_base_/models/upernet_r50.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
]
model = dict(
pretrained='open-mmlab://resnet18_v1c',
backbone=dict(depth=18),
decode_head=dict(in_channels=[64, 128, 256, 512], num_classes=150),
auxiliary_head=dict(in_channels=256, num_classes=150))