change inference time from fps to ms/im
parent
0c4c3b790d
commit
3856453537
|
@ -11,7 +11,7 @@ Models:
|
|||
- Name: ann_r50-d8_512x1024_40k_cityscapes
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps): 3.71
|
||||
inference time (ms/im): 269.54
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -25,7 +25,7 @@ Models:
|
|||
- Name: ann_r101-d8_512x1024_40k_cityscapes
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps): 2.55
|
||||
inference time (ms/im): 392.16
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -39,7 +39,7 @@ Models:
|
|||
- Name: ann_r50-d8_769x769_40k_cityscapes
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps): 1.70
|
||||
inference time (ms/im): 588.24
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -53,7 +53,7 @@ Models:
|
|||
- Name: ann_r101-d8_769x769_40k_cityscapes
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps): 1.15
|
||||
inference time (ms/im): 869.57
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -67,7 +67,7 @@ Models:
|
|||
- Name: ann_r50-d8_512x1024_80k_cityscapes
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps): 3.71
|
||||
inference time (ms/im): 269.54
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -81,7 +81,7 @@ Models:
|
|||
- Name: ann_r101-d8_512x1024_80k_cityscapes
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps): 2.55
|
||||
inference time (ms/im): 392.16
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -95,7 +95,7 @@ Models:
|
|||
- Name: ann_r50-d8_769x769_80k_cityscapes
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps): 1.70
|
||||
inference time (ms/im): 588.24
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -109,7 +109,7 @@ Models:
|
|||
- Name: ann_r101-d8_769x769_80k_cityscapes
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps):
|
||||
inference time (ms/im): 869.57
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -123,7 +123,7 @@ Models:
|
|||
- Name: ann_r50-d8_512x512_80k_ade20k
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps): 21.01
|
||||
inference time (ms/im): 47.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -137,7 +137,7 @@ Models:
|
|||
- Name: ann_r101-d8_512x512_80k_ade20k
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps): 14.12
|
||||
inference time (ms/im): 70.82
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -151,7 +151,7 @@ Models:
|
|||
- Name: ann_r50-d8_512x512_160k_ade20k
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps): 21.01
|
||||
inference time (ms/im): 47.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -165,7 +165,7 @@ Models:
|
|||
- Name: ann_r101-d8_512x512_160k_ade20k
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps): 14.12
|
||||
inference time (ms/im): 70.82
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -179,7 +179,7 @@ Models:
|
|||
- Name: ann_r50-d8_512x512_20k_voc12aug
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps): 20.92
|
||||
inference time (ms/im): 47.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -193,7 +193,7 @@ Models:
|
|||
- Name: ann_r101-d8_512x512_20k_voc12aug
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps): 13.94
|
||||
inference time (ms/im): 71.74
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -207,7 +207,7 @@ Models:
|
|||
- Name: ann_r50-d8_512x512_40k_voc12aug
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps): 20.92
|
||||
inference time (ms/im): 47.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -221,7 +221,7 @@ Models:
|
|||
- Name: ann_r101-d8_512x512_40k_voc12aug
|
||||
In Collection: ANN
|
||||
Metadata:
|
||||
inference time (fps): 13.94
|
||||
inference time (ms/im): 71.74
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
|
|
@ -10,7 +10,7 @@ Models:
|
|||
- Name: apcnet_r50-d8_512x1024_40k_cityscapes
|
||||
In Collection: APCNet
|
||||
Metadata:
|
||||
inference time (fps): 3.57
|
||||
inference time (ms/im): 280.11
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -24,7 +24,7 @@ Models:
|
|||
- Name: apcnet_r101-d8_512x1024_40k_cityscapes
|
||||
In Collection: APCNet
|
||||
Metadata:
|
||||
inference time (fps): 2.15
|
||||
inference time (ms/im): 465.12
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -38,7 +38,7 @@ Models:
|
|||
- Name: apcnet_r50-d8_769x769_40k_cityscapes
|
||||
In Collection: APCNet
|
||||
Metadata:
|
||||
inference time (fps): 1.52
|
||||
inference time (ms/im): 657.89
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -52,7 +52,7 @@ Models:
|
|||
- Name: apcnet_r101-d8_769x769_40k_cityscapes
|
||||
In Collection: APCNet
|
||||
Metadata:
|
||||
inference time (fps): 1.03
|
||||
inference time (ms/im): 970.87
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -66,7 +66,7 @@ Models:
|
|||
- Name: apcnet_r50-d8_512x1024_80k_cityscapes
|
||||
In Collection: APCNet
|
||||
Metadata:
|
||||
inference time (fps): 3.57
|
||||
inference time (ms/im): 280.11
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -80,7 +80,7 @@ Models:
|
|||
- Name: apcnet_r101-d8_512x1024_80k_cityscapes
|
||||
In Collection: APCNet
|
||||
Metadata:
|
||||
inference time (fps): 2.15
|
||||
inference time (ms/im): 465.12
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -94,7 +94,7 @@ Models:
|
|||
- Name: apcnet_r50-d8_769x769_80k_cityscapes
|
||||
In Collection: APCNet
|
||||
Metadata:
|
||||
inference time (fps): 1.52
|
||||
inference time (ms/im): 657.89
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -108,7 +108,7 @@ Models:
|
|||
- Name: apcnet_r101-d8_769x769_80k_cityscapes
|
||||
In Collection: APCNet
|
||||
Metadata:
|
||||
inference time (fps): 1.03
|
||||
inference time (ms/im): 970.87
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -122,7 +122,7 @@ Models:
|
|||
- Name: apcnet_r50-d8_512x512_80k_ade20k
|
||||
In Collection: APCNet
|
||||
Metadata:
|
||||
inference time (fps): 19.61
|
||||
inference time (ms/im): 50.99
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -136,7 +136,7 @@ Models:
|
|||
- Name: apcnet_r101-d8_512x512_80k_ade20k
|
||||
In Collection: APCNet
|
||||
Metadata:
|
||||
inference time (fps): 13.10
|
||||
inference time (ms/im): 76.34
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -150,7 +150,7 @@ Models:
|
|||
- Name: apcnet_r50-d8_512x512_160k_ade20k
|
||||
In Collection: APCNet
|
||||
Metadata:
|
||||
inference time (fps): 19.61
|
||||
inference time (ms/im): 50.99
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -164,7 +164,7 @@ Models:
|
|||
- Name: apcnet_r101-d8_512x512_160k_ade20k
|
||||
In Collection: APCNet
|
||||
Metadata:
|
||||
inference time (fps): 13.10
|
||||
inference time (ms/im): 76.34
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
|
|
@ -11,7 +11,7 @@ Models:
|
|||
- Name: ccnet_r50-d8_512x1024_40k_cityscapes
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 3.32
|
||||
inference time (ms/im): 301.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -25,7 +25,7 @@ Models:
|
|||
- Name: ccnet_r101-d8_512x1024_40k_cityscapes
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 2.31
|
||||
inference time (ms/im): 432.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -39,7 +39,7 @@ Models:
|
|||
- Name: ccnet_r50-d8_769x769_40k_cityscapes
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 1.43
|
||||
inference time (ms/im): 699.3
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -53,7 +53,7 @@ Models:
|
|||
- Name: ccnet_r101-d8_769x769_40k_cityscapes
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 1.01
|
||||
inference time (ms/im): 990.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -67,7 +67,7 @@ Models:
|
|||
- Name: ccnet_r50-d8_512x1024_80k_cityscapes
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 3.32
|
||||
inference time (ms/im): 301.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -81,7 +81,7 @@ Models:
|
|||
- Name: ccnet_r101-d8_512x1024_80k_cityscapes
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 2.31
|
||||
inference time (ms/im): 432.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -95,7 +95,7 @@ Models:
|
|||
- Name: ccnet_r50-d8_769x769_80k_cityscapes
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 1.43
|
||||
inference time (ms/im): 699.3
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -109,7 +109,7 @@ Models:
|
|||
- Name: ccnet_r101-d8_769x769_80k_cityscapes
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 1.01
|
||||
inference time (ms/im): 990.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -123,7 +123,7 @@ Models:
|
|||
- Name: ccnet_r50-d8_512x512_80k_ade20k
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 20.89
|
||||
inference time (ms/im): 47.87
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -137,7 +137,7 @@ Models:
|
|||
- Name: ccnet_r101-d8_512x512_80k_ade20k
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 14.11
|
||||
inference time (ms/im): 70.87
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -151,7 +151,7 @@ Models:
|
|||
- Name: ccnet_r50-d8_512x512_160k_ade20k
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 20.89
|
||||
inference time (ms/im): 47.87
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -165,7 +165,7 @@ Models:
|
|||
- Name: ccnet_r101-d8_512x512_160k_ade20k
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 14.11
|
||||
inference time (ms/im): 70.87
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -179,7 +179,7 @@ Models:
|
|||
- Name: ccnet_r50-d8_512x512_20k_voc12aug
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 20.45
|
||||
inference time (ms/im): 48.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -193,7 +193,7 @@ Models:
|
|||
- Name: ccnet_r101-d8_512x512_20k_voc12aug
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 13.64
|
||||
inference time (ms/im): 73.31
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -207,7 +207,7 @@ Models:
|
|||
- Name: ccnet_r50-d8_512x512_40k_voc12aug
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 20.45
|
||||
inference time (ms/im): 48.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -221,7 +221,7 @@ Models:
|
|||
- Name: ccnet_r101-d8_512x512_40k_voc12aug
|
||||
In Collection: CCNet
|
||||
Metadata:
|
||||
inference time (fps): 13.64
|
||||
inference time (ms/im): 73.31
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
|
|
@ -9,7 +9,7 @@ Models:
|
|||
- Name: cgnet_680x680_60k_cityscapes
|
||||
In Collection: CGNet
|
||||
Metadata:
|
||||
inference time (fps): 30.51
|
||||
inference time (ms/im): 32.78
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -23,7 +23,7 @@ Models:
|
|||
- Name: cgnet_512x1024_60k_cityscapes
|
||||
In Collection: CGNet
|
||||
Metadata:
|
||||
inference time (fps): 31.14
|
||||
inference time (ms/im): 32.11
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
|
|
@ -11,7 +11,7 @@ Models:
|
|||
- Name: danet_r50-d8_512x1024_40k_cityscapes
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 2.66
|
||||
inference time (ms/im): 375.94
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -25,7 +25,7 @@ Models:
|
|||
- Name: danet_r101-d8_512x1024_40k_cityscapes
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 1.99
|
||||
inference time (ms/im): 502.51
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -39,7 +39,7 @@ Models:
|
|||
- Name: danet_r50-d8_769x769_40k_cityscapes
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 1.56
|
||||
inference time (ms/im): 641.03
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -53,7 +53,7 @@ Models:
|
|||
- Name: danet_r101-d8_769x769_40k_cityscapes
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 1.07
|
||||
inference time (ms/im): 934.58
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -67,7 +67,7 @@ Models:
|
|||
- Name: danet_r50-d8_512x1024_80k_cityscapes
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 2.66
|
||||
inference time (ms/im): 375.94
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -81,7 +81,7 @@ Models:
|
|||
- Name: danet_r101-d8_512x1024_80k_cityscapes
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 1.99
|
||||
inference time (ms/im): 502.51
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -95,7 +95,7 @@ Models:
|
|||
- Name: danet_r50-d8_769x769_80k_cityscapes
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 1.56
|
||||
inference time (ms/im): 641.03
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -109,7 +109,7 @@ Models:
|
|||
- Name: danet_r101-d8_769x769_80k_cityscapes
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 1.07
|
||||
inference time (ms/im): 934.58
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -123,7 +123,7 @@ Models:
|
|||
- Name: danet_r50-d8_512x512_80k_ade20k
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 21.20
|
||||
inference time (ms/im): 47.17
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -137,7 +137,7 @@ Models:
|
|||
- Name: danet_r101-d8_512x512_80k_ade20k
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 14.18
|
||||
inference time (ms/im): 70.52
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -151,7 +151,7 @@ Models:
|
|||
- Name: danet_r50-d8_512x512_160k_ade20k
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 21.20
|
||||
inference time (ms/im): 47.17
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -165,7 +165,7 @@ Models:
|
|||
- Name: danet_r101-d8_512x512_160k_ade20k
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 14.18
|
||||
inference time (ms/im): 70.52
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -179,7 +179,7 @@ Models:
|
|||
- Name: danet_r50-d8_512x512_20k_voc12aug
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 20.94
|
||||
inference time (ms/im): 47.76
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -193,7 +193,7 @@ Models:
|
|||
- Name: danet_r101-d8_512x512_20k_voc12aug
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 13.76
|
||||
inference time (ms/im): 72.67
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -207,7 +207,7 @@ Models:
|
|||
- Name: danet_r50-d8_512x512_40k_voc12aug
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 20.94
|
||||
inference time (ms/im): 47.76
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -221,7 +221,7 @@ Models:
|
|||
- Name: danet_r101-d8_512x512_40k_voc12aug
|
||||
In Collection: DANet
|
||||
Metadata:
|
||||
inference time (fps): 13.76
|
||||
inference time (ms/im): 72.67
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
|
|
@ -12,7 +12,7 @@ Models:
|
|||
- Name: deeplabv3_r50-d8_512x1024_40k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 2.57
|
||||
inference time (ms/im): 389.11
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -26,7 +26,7 @@ Models:
|
|||
- Name: deeplabv3_r101-d8_512x1024_40k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 1.92
|
||||
inference time (ms/im): 520.83
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -40,7 +40,7 @@ Models:
|
|||
- Name: deeplabv3_r50-d8_769x769_40k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 1.11
|
||||
inference time (ms/im): 900.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -54,7 +54,7 @@ Models:
|
|||
- Name: deeplabv3_r101-d8_769x769_40k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 0.83
|
||||
inference time (ms/im): 1204.82
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -68,7 +68,7 @@ Models:
|
|||
- Name: deeplabv3_r18-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 13.78
|
||||
inference time (ms/im): 72.57
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -82,7 +82,7 @@ Models:
|
|||
- Name: deeplabv3_r50-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 2.57
|
||||
inference time (ms/im): 389.11
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -96,7 +96,7 @@ Models:
|
|||
- Name: deeplabv3_r101-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 1.92
|
||||
inference time (ms/im): 520.83
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -110,7 +110,7 @@ Models:
|
|||
- Name: deeplabv3_r18-d8_769x769_80k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 5.55
|
||||
inference time (ms/im): 180.18
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -124,7 +124,7 @@ Models:
|
|||
- Name: deeplabv3_r50-d8_769x769_80k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 1.11
|
||||
inference time (ms/im): 900.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -138,7 +138,7 @@ Models:
|
|||
- Name: deeplabv3_r101-d8_769x769_80k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 0.83
|
||||
inference time (ms/im): 1204.82
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -152,7 +152,7 @@ Models:
|
|||
- Name: deeplabv3_r101-d16-mg124_512x1024_40k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 6.96
|
||||
inference time (ms/im): 143.68
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -166,7 +166,7 @@ Models:
|
|||
- Name: deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 6.96
|
||||
inference time (ms/im): 143.68
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -180,7 +180,7 @@ Models:
|
|||
- Name: deeplabv3_r18b-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 13.93
|
||||
inference time (ms/im): 71.79
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -194,7 +194,7 @@ Models:
|
|||
- Name: deeplabv3_r50b-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 2.74
|
||||
inference time (ms/im): 364.96
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -208,7 +208,7 @@ Models:
|
|||
- Name: deeplabv3_r101b-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 1.81
|
||||
inference time (ms/im): 552.49
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -222,7 +222,7 @@ Models:
|
|||
- Name: deeplabv3_r18b-d8_769x769_80k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 5.79
|
||||
inference time (ms/im): 172.71
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -236,7 +236,7 @@ Models:
|
|||
- Name: deeplabv3_r50b-d8_769x769_80k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 1.16
|
||||
inference time (ms/im): 862.07
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -250,7 +250,7 @@ Models:
|
|||
- Name: deeplabv3_r101b-d8_769x769_80k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 0.82
|
||||
inference time (ms/im): 1219.51
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -264,7 +264,7 @@ Models:
|
|||
- Name: deeplabv3_r50-d8_512x512_80k_ade20k
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 14.76
|
||||
inference time (ms/im): 67.75
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -278,7 +278,7 @@ Models:
|
|||
- Name: deeplabv3_r101-d8_512x512_80k_ade20k
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 10.14
|
||||
inference time (ms/im): 98.62
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -292,7 +292,7 @@ Models:
|
|||
- Name: deeplabv3_r50-d8_512x512_160k_ade20k
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 14.76
|
||||
inference time (ms/im): 67.75
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -306,7 +306,7 @@ Models:
|
|||
- Name: deeplabv3_r101-d8_512x512_160k_ade20k
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 10.14
|
||||
inference time (ms/im): 98.62
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -320,7 +320,7 @@ Models:
|
|||
- Name: deeplabv3_r50-d8_512x512_20k_voc12aug
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 13.88
|
||||
inference time (ms/im): 72.05
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -334,7 +334,7 @@ Models:
|
|||
- Name: deeplabv3_r101-d8_512x512_20k_voc12aug
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 9.81
|
||||
inference time (ms/im): 101.94
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -348,7 +348,7 @@ Models:
|
|||
- Name: deeplabv3_r50-d8_512x512_40k_voc12aug
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 13.88
|
||||
inference time (ms/im): 72.05
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -362,7 +362,7 @@ Models:
|
|||
- Name: deeplabv3_r101-d8_512x512_40k_voc12aug
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 9.81
|
||||
inference time (ms/im): 101.94
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -376,7 +376,7 @@ Models:
|
|||
- Name: deeplabv3_r101-d8_480x480_40k_pascal_context
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 7.09
|
||||
inference time (ms/im): 141.04
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
@ -390,7 +390,7 @@ Models:
|
|||
- Name: deeplabv3_r101-d8_480x480_80k_pascal_context
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 7.09
|
||||
inference time (ms/im): 141.04
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
@ -404,7 +404,7 @@ Models:
|
|||
- Name: deeplabv3_r101-d8_480x480_40k_pascal_context
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
@ -418,7 +418,7 @@ Models:
|
|||
- Name: deeplabv3_r101-d8_480x480_80k_pascal_context_59
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
|
|
@ -12,7 +12,7 @@ Models:
|
|||
- Name: deeplabv3plus_r50-d8_512x1024_40k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 3.94
|
||||
inference time (ms/im): 253.81
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -26,7 +26,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101-d8_512x1024_40k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 2.60
|
||||
inference time (ms/im): 384.62
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -40,7 +40,7 @@ Models:
|
|||
- Name: deeplabv3plus_r50-d8_769x769_40k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 1.72
|
||||
inference time (ms/im): 581.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -54,7 +54,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101-d8_769x769_40k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 1.15
|
||||
inference time (ms/im): 869.57
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -68,7 +68,7 @@ Models:
|
|||
- Name: deeplabv3plus_r18-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 14.27
|
||||
inference time (ms/im): 70.08
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -82,7 +82,7 @@ Models:
|
|||
- Name: deeplabv3plus_r50-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 3.94
|
||||
inference time (ms/im): 253.81
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -96,7 +96,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 2.60
|
||||
inference time (ms/im): 384.62
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -110,7 +110,7 @@ Models:
|
|||
- Name: deeplabv3plus_r18-d8_769x769_80k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 5.74
|
||||
inference time (ms/im): 174.22
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -124,7 +124,7 @@ Models:
|
|||
- Name: deeplabv3plus_r50-d8_769x769_80k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 1.72
|
||||
inference time (ms/im): 581.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -138,7 +138,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101-d8_769x769_80k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 1.15
|
||||
inference time (ms/im): 869.57
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -152,7 +152,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 7.48
|
||||
inference time (ms/im): 133.69
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -166,7 +166,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 7.48
|
||||
inference time (ms/im): 133.69
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -180,7 +180,7 @@ Models:
|
|||
- Name: deeplabv3plus_r18b-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 14.95
|
||||
inference time (ms/im): 66.89
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -194,7 +194,7 @@ Models:
|
|||
- Name: deeplabv3plus_r50b-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 3.94
|
||||
inference time (ms/im): 253.81
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -208,7 +208,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101b-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 2.60
|
||||
inference time (ms/im): 384.62
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -222,7 +222,7 @@ Models:
|
|||
- Name: deeplabv3plus_r18b-d8_769x769_80k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 5.96
|
||||
inference time (ms/im): 167.79
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -236,7 +236,7 @@ Models:
|
|||
- Name: deeplabv3plus_r50b-d8_769x769_80k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 1.72
|
||||
inference time (ms/im): 581.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -250,7 +250,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101b-d8_769x769_80k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 1.10
|
||||
inference time (ms/im): 909.09
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -264,7 +264,7 @@ Models:
|
|||
- Name: deeplabv3plus_r50-d8_512x512_80k_ade20k
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 21.01
|
||||
inference time (ms/im): 47.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -278,7 +278,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101-d8_512x512_80k_ade20k
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 14.16
|
||||
inference time (ms/im): 70.62
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -292,7 +292,7 @@ Models:
|
|||
- Name: deeplabv3plus_r50-d8_512x512_160k_ade20k
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 21.01
|
||||
inference time (ms/im): 47.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -306,7 +306,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101-d8_512x512_160k_ade20k
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 14.16
|
||||
inference time (ms/im): 70.62
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -320,7 +320,7 @@ Models:
|
|||
- Name: deeplabv3plus_r50-d8_512x512_20k_voc12aug
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 21
|
||||
inference time (ms/im): 47.62
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -334,7 +334,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101-d8_512x512_20k_voc12aug
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 13.88
|
||||
inference time (ms/im): 72.05
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -348,7 +348,7 @@ Models:
|
|||
- Name: deeplabv3plus_r50-d8_512x512_40k_voc12aug
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 21
|
||||
inference time (ms/im): 47.62
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -362,7 +362,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101-d8_512x512_40k_voc12aug
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 13.88
|
||||
inference time (ms/im): 72.05
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -376,7 +376,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101-d8_480x480_40k_pascal_context
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 9.09
|
||||
inference time (ms/im): 110.01
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
@ -390,7 +390,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 9.09
|
||||
inference time (ms/im): 110.01
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
@ -404,7 +404,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101-d8_480x480_40k_pascal_context
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
@ -418,7 +418,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
|
|
@ -10,7 +10,7 @@ Models:
|
|||
- Name: dmnet_r50-d8_512x1024_40k_cityscapes
|
||||
In Collection: DMNet
|
||||
Metadata:
|
||||
inference time (fps): 3.66
|
||||
inference time (ms/im): 273.22
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -24,7 +24,7 @@ Models:
|
|||
- Name: dmnet_r101-d8_512x1024_40k_cityscapes
|
||||
In Collection: DMNet
|
||||
Metadata:
|
||||
inference time (fps): 2.54
|
||||
inference time (ms/im): 393.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -38,7 +38,7 @@ Models:
|
|||
- Name: dmnet_r50-d8_769x769_40k_cityscapes
|
||||
In Collection: DMNet
|
||||
Metadata:
|
||||
inference time (fps): 1.57
|
||||
inference time (ms/im): 636.94
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -52,7 +52,7 @@ Models:
|
|||
- Name: dmnet_r101-d8_769x769_40k_cityscapes
|
||||
In Collection: DMNet
|
||||
Metadata:
|
||||
inference time (fps): 1.01
|
||||
inference time (ms/im): 990.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -66,7 +66,7 @@ Models:
|
|||
- Name: dmnet_r50-d8_512x1024_80k_cityscapes
|
||||
In Collection: DMNet
|
||||
Metadata:
|
||||
inference time (fps): 3.66
|
||||
inference time (ms/im): 273.22
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -80,7 +80,7 @@ Models:
|
|||
- Name: dmnet_r101-d8_512x1024_80k_cityscapes
|
||||
In Collection: DMNet
|
||||
Metadata:
|
||||
inference time (fps): 2.54
|
||||
inference time (ms/im): 393.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -94,7 +94,7 @@ Models:
|
|||
- Name: dmnet_r50-d8_769x769_80k_cityscapes
|
||||
In Collection: DMNet
|
||||
Metadata:
|
||||
inference time (fps): 1.57
|
||||
inference time (ms/im): 636.94
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -108,7 +108,7 @@ Models:
|
|||
- Name: dmnet_r101-d8_769x769_80k_cityscapes
|
||||
In Collection: DMNet
|
||||
Metadata:
|
||||
inference time (fps): 1.01
|
||||
inference time (ms/im): 990.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -122,7 +122,7 @@ Models:
|
|||
- Name: dmnet_r50-d8_512x512_80k_ade20k
|
||||
In Collection: DMNet
|
||||
Metadata:
|
||||
inference time (fps): 20.95
|
||||
inference time (ms/im): 47.73
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -136,7 +136,7 @@ Models:
|
|||
- Name: dmnet_r101-d8_512x512_80k_ade20k
|
||||
In Collection: DMNet
|
||||
Metadata:
|
||||
inference time (fps): 13.88
|
||||
inference time (ms/im): 72.05
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -150,7 +150,7 @@ Models:
|
|||
- Name: dmnet_r50-d8_512x512_160k_ade20k
|
||||
In Collection: DMNet
|
||||
Metadata:
|
||||
inference time (fps): 20.95
|
||||
inference time (ms/im): 47.73
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -164,7 +164,7 @@ Models:
|
|||
- Name: dmnet_r101-d8_512x512_160k_ade20k
|
||||
In Collection: DMNet
|
||||
Metadata:
|
||||
inference time (fps): 13.88
|
||||
inference time (ms/im): 72.05
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
|
|
@ -10,7 +10,7 @@ Models:
|
|||
- Name: dnl_r50-d8_512x1024_40k_cityscapes
|
||||
In Collection: dnl
|
||||
Metadata:
|
||||
inference time (fps): 2.56
|
||||
inference time (ms/im): 390.62
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -24,7 +24,7 @@ Models:
|
|||
- Name: dnl_r101-d8_512x1024_40k_cityscapes
|
||||
In Collection: dnl
|
||||
Metadata:
|
||||
inference time (fps): 1.96
|
||||
inference time (ms/im): 510.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -38,7 +38,7 @@ Models:
|
|||
- Name: dnl_r50-d8_769x769_40k_cityscapes
|
||||
In Collection: dnl
|
||||
Metadata:
|
||||
inference time (fps): 1.50
|
||||
inference time (ms/im): 666.67
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -52,7 +52,7 @@ Models:
|
|||
- Name: dnl_r101-d8_769x769_40k_cityscapes
|
||||
In Collection: dnl
|
||||
Metadata:
|
||||
inference time (fps): 1.02
|
||||
inference time (ms/im): 980.39
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -66,7 +66,7 @@ Models:
|
|||
- Name: dnl_r50-d8_512x1024_80k_cityscapes
|
||||
In Collection: dnl
|
||||
Metadata:
|
||||
inference time (fps): 2.56
|
||||
inference time (ms/im): 390.62
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -80,7 +80,7 @@ Models:
|
|||
- Name: dnl_r101-d8_512x1024_80k_cityscapes
|
||||
In Collection: dnl
|
||||
Metadata:
|
||||
inference time (fps): 1.96
|
||||
inference time (ms/im): 510.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -94,7 +94,7 @@ Models:
|
|||
- Name: dnl_r50-d8_769x769_80k_cityscapes
|
||||
In Collection: dnl
|
||||
Metadata:
|
||||
inference time (fps): 1.50
|
||||
inference time (ms/im): 666.67
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -108,7 +108,7 @@ Models:
|
|||
- Name: dnl_r101-d8_769x769_80k_cityscapes
|
||||
In Collection: dnl
|
||||
Metadata:
|
||||
inference time (fps): 1.02
|
||||
inference time (ms/im): 980.39
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -122,7 +122,7 @@ Models:
|
|||
- Name: dnl_r50-d8_512x512_80k_ade20k
|
||||
In Collection: dnl
|
||||
Metadata:
|
||||
inference time (fps): 20.66
|
||||
inference time (ms/im): 48.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -136,7 +136,7 @@ Models:
|
|||
- Name: dnl_r101-d8_512x512_80k_ade20k
|
||||
In Collection: dnl
|
||||
Metadata:
|
||||
inference time (fps): 12.54
|
||||
inference time (ms/im): 79.74
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -150,7 +150,7 @@ Models:
|
|||
- Name: dnl_r50-d8_512x512_160k_ade20k
|
||||
In Collection: dnl
|
||||
Metadata:
|
||||
inference time (fps): 20.66
|
||||
inference time (ms/im): 48.4
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -164,7 +164,7 @@ Models:
|
|||
- Name: dnl_r101-d8_512x512_160k_ade20k
|
||||
In Collection: dnl
|
||||
Metadata:
|
||||
inference time (fps): 12.54
|
||||
inference time (ms/im): 79.74
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
|
|
@ -9,7 +9,7 @@ Models:
|
|||
- Name: emanet_r50-d8_512x1024_80k_cityscapes
|
||||
In Collection: EMANet
|
||||
Metadata:
|
||||
inference time (fps): 4.58
|
||||
inference time (ms/im): 218.34
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -23,7 +23,7 @@ Models:
|
|||
- Name: emanet_r101-d8_512x1024_80k_cityscapes
|
||||
In Collection: EMANet
|
||||
Metadata:
|
||||
inference time (fps): 2.87
|
||||
inference time (ms/im): 348.43
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -37,7 +37,7 @@ Models:
|
|||
- Name: emanet_r50-d8_769x769_80k_cityscapes
|
||||
In Collection: EMANet
|
||||
Metadata:
|
||||
inference time (fps): 1.97
|
||||
inference time (ms/im): 507.61
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -51,7 +51,7 @@ Models:
|
|||
- Name: emanet_r101-d8_769x769_80k_cityscapes
|
||||
In Collection: EMANet
|
||||
Metadata:
|
||||
inference time (fps): 1.22
|
||||
inference time (ms/im): 819.67
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
|
|
@ -11,7 +11,7 @@ Models:
|
|||
- Name: encnet_r50-d8_512x1024_40k_cityscapes
|
||||
In Collection: encnet
|
||||
Metadata:
|
||||
inference time (fps): 4.58
|
||||
inference time (ms/im): 218.34
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -25,7 +25,7 @@ Models:
|
|||
- Name: encnet_r101-d8_512x1024_40k_cityscapes
|
||||
In Collection: encnet
|
||||
Metadata:
|
||||
inference time (fps): 2.66
|
||||
inference time (ms/im): 375.94
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -39,7 +39,7 @@ Models:
|
|||
- Name: encnet_r50-d8_769x769_40k_cityscapes
|
||||
In Collection: encnet
|
||||
Metadata:
|
||||
inference time (fps): 1.82
|
||||
inference time (ms/im): 549.45
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -53,7 +53,7 @@ Models:
|
|||
- Name: encnet_r101-d8_769x769_40k_cityscapes
|
||||
In Collection: encnet
|
||||
Metadata:
|
||||
inference time (fps): 1.26
|
||||
inference time (ms/im): 793.65
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -67,7 +67,7 @@ Models:
|
|||
- Name: encnet_r50-d8_512x1024_80k_cityscapes
|
||||
In Collection: encnet
|
||||
Metadata:
|
||||
inference time (fps): 4.58
|
||||
inference time (ms/im): 218.34
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -81,7 +81,7 @@ Models:
|
|||
- Name: encnet_r101-d8_512x1024_80k_cityscapes
|
||||
In Collection: encnet
|
||||
Metadata:
|
||||
inference time (fps): 2.66
|
||||
inference time (ms/im): 375.94
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -95,7 +95,7 @@ Models:
|
|||
- Name: encnet_r50-d8_769x769_80k_cityscapes
|
||||
In Collection: encnet
|
||||
Metadata:
|
||||
inference time (fps): 1.82
|
||||
inference time (ms/im): 549.45
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -109,7 +109,7 @@ Models:
|
|||
- Name: encnet_r101-d8_769x769_80k_cityscapes
|
||||
In Collection: encnet
|
||||
Metadata:
|
||||
inference time (fps): 1.26
|
||||
inference time (ms/im): 793.65
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -123,7 +123,7 @@ Models:
|
|||
- Name: encnet_r50-d8_512x512_80k_ade20k
|
||||
In Collection: encnet
|
||||
Metadata:
|
||||
inference time (fps): 22.81
|
||||
inference time (ms/im): 43.84
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -137,7 +137,7 @@ Models:
|
|||
- Name: encnet_r101-d8_512x512_80k_ade20k
|
||||
In Collection: encnet
|
||||
Metadata:
|
||||
inference time (fps): 14.87
|
||||
inference time (ms/im): 67.25
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -151,7 +151,7 @@ Models:
|
|||
- Name: encnet_r50-d8_512x512_160k_ade20k
|
||||
In Collection: encnet
|
||||
Metadata:
|
||||
inference time (fps): 22.81
|
||||
inference time (ms/im): 43.84
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -165,7 +165,7 @@ Models:
|
|||
- Name: encnet_r101-d8_512x512_160k_ade20k
|
||||
In Collection: encnet
|
||||
Metadata:
|
||||
inference time (fps): 14.87
|
||||
inference time (ms/im): 67.25
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
|
|
@ -9,7 +9,7 @@ Models:
|
|||
- Name: fast_scnn_4x8_80k_lr0.12_cityscapes
|
||||
In Collection: Fast-SCNN
|
||||
Metadata:
|
||||
inference time (fps): 63.61
|
||||
inference time (ms/im): 15.72
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
|
|
@ -19,7 +19,7 @@ Models:
|
|||
- Name: fcn_r50-d8_512x1024_40k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 4.17
|
||||
inference time (ms/im): 239.81
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -33,7 +33,7 @@ Models:
|
|||
- Name: fcn_r101-d8_512x1024_40k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 2.66
|
||||
inference time (ms/im): 375.94
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -47,7 +47,7 @@ Models:
|
|||
- Name: fcn_r50-d8_769x769_40k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 1.80
|
||||
inference time (ms/im): 555.56
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -61,7 +61,7 @@ Models:
|
|||
- Name: fcn_r101-d8_769x769_40k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 1.19
|
||||
inference time (ms/im): 840.34
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -75,7 +75,7 @@ Models:
|
|||
- Name: fcn_r18-d8_512x1024_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 14.65
|
||||
inference time (ms/im): 68.26
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -89,7 +89,7 @@ Models:
|
|||
- Name: fcn_r50-d8_512x1024_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 4.17
|
||||
inference time (ms/im): 239.81
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -103,7 +103,7 @@ Models:
|
|||
- Name: fcn_r101-d8_512x1024_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 2.66
|
||||
inference time (ms/im): 375.94
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -117,7 +117,7 @@ Models:
|
|||
- Name: fcn_r18-d8_769x769_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 6.40
|
||||
inference time (ms/im): 156.25
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -131,7 +131,7 @@ Models:
|
|||
- Name: fcn_r50-d8_769x769_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 1.80
|
||||
inference time (ms/im): 555.56
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -145,7 +145,7 @@ Models:
|
|||
- Name: fcn_r101-d8_769x769_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 1.19
|
||||
inference time (ms/im): 840.34
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -159,7 +159,7 @@ Models:
|
|||
- Name: fcn_r18b-d8_512x1024_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 16.74
|
||||
inference time (ms/im): 59.74
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -173,7 +173,7 @@ Models:
|
|||
- Name: fcn_r50b-d8_512x1024_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 4.20
|
||||
inference time (ms/im): 238.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -187,7 +187,7 @@ Models:
|
|||
- Name: fcn_r101b-d8_512x1024_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 2.73
|
||||
inference time (ms/im): 366.3
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -201,7 +201,7 @@ Models:
|
|||
- Name: fcn_r18b-d8_769x769_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 6.70
|
||||
inference time (ms/im): 149.25
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -215,7 +215,7 @@ Models:
|
|||
- Name: fcn_r50b-d8_769x769_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 1.82
|
||||
inference time (ms/im): 549.45
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -229,7 +229,7 @@ Models:
|
|||
- Name: fcn_r101b-d8_769x769_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 1.15
|
||||
inference time (ms/im): 869.57
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -243,7 +243,7 @@ Models:
|
|||
- Name: fcn_d6_r50-d16_512x1024_40k_cityscapes
|
||||
In Collection: FCN-D6
|
||||
Metadata:
|
||||
inference time (fps): 10.22
|
||||
inference time (ms/im): 97.85
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -257,7 +257,7 @@ Models:
|
|||
- Name: fcn_d6_r50-d16_512x1024_80k_cityscapes
|
||||
In Collection: FCN-D6
|
||||
Metadata:
|
||||
inference time (fps): 10.35
|
||||
inference time (ms/im): 96.62
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -271,7 +271,7 @@ Models:
|
|||
- Name: fcn_d6_r50-d16_769x769_40k_cityscapes
|
||||
In Collection: FCN-D6
|
||||
Metadata:
|
||||
inference time (fps): 4.17
|
||||
inference time (ms/im): 239.81
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -285,7 +285,7 @@ Models:
|
|||
- Name: fcn_d6_r50-d16_769x769_80k_cityscapes
|
||||
In Collection: FCN-D6
|
||||
Metadata:
|
||||
inference time (fps): 4.15
|
||||
inference time (ms/im): 240.96
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -299,7 +299,7 @@ Models:
|
|||
- Name: fcn_d6_r101-d16_512x1024_40k_cityscapes
|
||||
In Collection: FCN-D6
|
||||
Metadata:
|
||||
inference time (fps): 8.04
|
||||
inference time (ms/im): 124.38
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -313,7 +313,7 @@ Models:
|
|||
- Name: fcn_d6_r101-d16_512x1024_80k_cityscapes
|
||||
In Collection: FCN-D6
|
||||
Metadata:
|
||||
inference time (fps): 8.26
|
||||
inference time (ms/im): 121.07
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -327,7 +327,7 @@ Models:
|
|||
- Name: fcn_d6_r101-d16_769x769_40k_cityscapes
|
||||
In Collection: FCN-D6
|
||||
Metadata:
|
||||
inference time (fps): 3.12
|
||||
inference time (ms/im): 320.51
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -341,7 +341,7 @@ Models:
|
|||
- Name: fcn_d6_r101-d16_769x769_80k_cityscapes
|
||||
In Collection: FCN-D6
|
||||
Metadata:
|
||||
inference time (fps): 3.21
|
||||
inference time (ms/im): 311.53
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -355,7 +355,7 @@ Models:
|
|||
- Name: fcn_r50-d8_512x512_80k_ade20k
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 23.49
|
||||
inference time (ms/im): 42.57
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -369,7 +369,7 @@ Models:
|
|||
- Name: fcn_r101-d8_512x512_80k_ade20k
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 14.78
|
||||
inference time (ms/im): 67.66
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -383,7 +383,7 @@ Models:
|
|||
- Name: fcn_r50-d8_512x512_160k_ade20k
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 23.49
|
||||
inference time (ms/im): 42.57
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -397,7 +397,7 @@ Models:
|
|||
- Name: fcn_r101-d8_512x512_160k_ade20k
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 14.78
|
||||
inference time (ms/im): 67.66
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -411,7 +411,7 @@ Models:
|
|||
- Name: fcn_r50-d8_512x512_20k_voc12aug
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 23.28
|
||||
inference time (ms/im): 42.96
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -425,7 +425,7 @@ Models:
|
|||
- Name: fcn_r101-d8_512x512_20k_voc12aug
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 14.81
|
||||
inference time (ms/im): 67.52
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -439,7 +439,7 @@ Models:
|
|||
- Name: fcn_r50-d8_512x512_40k_voc12aug
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 23.28
|
||||
inference time (ms/im): 42.96
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -453,7 +453,7 @@ Models:
|
|||
- Name: fcn_r101-d8_512x512_40k_voc12aug
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 14.81
|
||||
inference time (ms/im): 67.52
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -467,7 +467,7 @@ Models:
|
|||
- Name: fcn_r101-d8_480x480_40k_pascal_context
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 9.93
|
||||
inference time (ms/im): 100.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
@ -481,7 +481,7 @@ Models:
|
|||
- Name: fcn_r101-d8_480x480_80k_pascal_context
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 9.93
|
||||
inference time (ms/im): 100.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
@ -495,7 +495,7 @@ Models:
|
|||
- Name: fcn_r101-d8_480x480_40k_pascal_context_59
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
@ -509,7 +509,7 @@ Models:
|
|||
- Name: fcn_r101-d8_480x480_80k_pascal_context_59
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
|
|
@ -4,7 +4,7 @@ Models:
|
|||
- Name: fcn_r101-d8_512x1024_80k_fp16_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 8.64
|
||||
inference time (ms/im): 115.74
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -18,7 +18,7 @@ Models:
|
|||
- Name: pspnet_r101-d8_512x1024_80k_fp16_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 8.77
|
||||
inference time (ms/im): 114.03
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -32,7 +32,7 @@ Models:
|
|||
- Name: deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 3.86
|
||||
inference time (ms/im): 259.07
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -46,7 +46,7 @@ Models:
|
|||
- Name: deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 7.87
|
||||
inference time (ms/im): 127.06
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
|
|
@ -11,7 +11,7 @@ Models:
|
|||
- Name: gcnet_r50-d8_512x1024_40k_cityscapes
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 3.93
|
||||
inference time (ms/im): 254.45
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -25,7 +25,7 @@ Models:
|
|||
- Name: gcnet_r101-d8_512x1024_40k_cityscapes
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 2.61
|
||||
inference time (ms/im): 383.14
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -39,7 +39,7 @@ Models:
|
|||
- Name: gcnet_r50-d8_769x769_40k_cityscapes
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 1.67
|
||||
inference time (ms/im): 598.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -53,7 +53,7 @@ Models:
|
|||
- Name: gcnet_r101-d8_769x769_40k_cityscapes
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 1.13
|
||||
inference time (ms/im): 884.96
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -67,7 +67,7 @@ Models:
|
|||
- Name: gcnet_r50-d8_512x1024_80k_cityscapes
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 3.93
|
||||
inference time (ms/im): 254.45
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -81,7 +81,7 @@ Models:
|
|||
- Name: gcnet_r101-d8_512x1024_80k_cityscapes
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 2.61
|
||||
inference time (ms/im): 383.14
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -95,7 +95,7 @@ Models:
|
|||
- Name: gcnet_r50-d8_769x769_80k_cityscapes
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 1.67
|
||||
inference time (ms/im): 598.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -109,7 +109,7 @@ Models:
|
|||
- Name: gcnet_r101-d8_769x769_80k_cityscapes
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 1.13
|
||||
inference time (ms/im): 884.96
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -123,7 +123,7 @@ Models:
|
|||
- Name: gcnet_r50-d8_512x512_80k_ade20k
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 23.38
|
||||
inference time (ms/im): 42.77
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -137,7 +137,7 @@ Models:
|
|||
- Name: gcnet_r101-d8_512x512_80k_ade20k
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 15.20
|
||||
inference time (ms/im): 65.79
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -151,7 +151,7 @@ Models:
|
|||
- Name: gcnet_r50-d8_512x512_160k_ade20k
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 23.38
|
||||
inference time (ms/im): 42.77
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -165,7 +165,7 @@ Models:
|
|||
- Name: gcnet_r101-d8_512x512_160k_ade20k
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 15.20
|
||||
inference time (ms/im): 65.79
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -179,7 +179,7 @@ Models:
|
|||
- Name: gcnet_r50-d8_512x512_20k_voc12aug
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 23.35
|
||||
inference time (ms/im): 42.83
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -193,7 +193,7 @@ Models:
|
|||
- Name: gcnet_r101-d8_512x512_20k_voc12aug
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 14.80
|
||||
inference time (ms/im): 67.57
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -207,7 +207,7 @@ Models:
|
|||
- Name: gcnet_r50-d8_512x512_40k_voc12aug
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 23.35
|
||||
inference time (ms/im): 42.83
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -221,7 +221,7 @@ Models:
|
|||
- Name: gcnet_r101-d8_512x512_40k_voc12aug
|
||||
In Collection: GCNet
|
||||
Metadata:
|
||||
inference time (fps): 14.80
|
||||
inference time (ms/im): 67.57
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
|
|
@ -2,7 +2,7 @@ Models:
|
|||
- Name: fcn_hr18s_512x1024_40k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 23.74
|
||||
inference time (ms/im): 42.12
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -16,7 +16,7 @@ Models:
|
|||
- Name: fcn_hr18_512x1024_40k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 12.97
|
||||
inference time (ms/im): 77.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -30,7 +30,7 @@ Models:
|
|||
- Name: fcn_hr48_512x1024_40k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 6.42
|
||||
inference time (ms/im): 155.76
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -44,7 +44,7 @@ Models:
|
|||
- Name: fcn_hr18s_512x1024_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 23.74
|
||||
inference time (ms/im): 42.12
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -58,7 +58,7 @@ Models:
|
|||
- Name: fcn_hr18_512x1024_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 12.97
|
||||
inference time (ms/im): 77.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -72,7 +72,7 @@ Models:
|
|||
- Name: fcn_hr48_512x1024_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 6.42
|
||||
inference time (ms/im): 155.76
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -86,7 +86,7 @@ Models:
|
|||
- Name: fcn_hr18s_512x1024_160k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 23.74
|
||||
inference time (ms/im): 42.12
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -100,7 +100,7 @@ Models:
|
|||
- Name: fcn_hr18_512x1024_160k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 12.97
|
||||
inference time (ms/im): 77.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -114,7 +114,7 @@ Models:
|
|||
- Name: fcn_hr48_512x1024_160k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 6.42
|
||||
inference time (ms/im): 155.76
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -128,7 +128,7 @@ Models:
|
|||
- Name: fcn_hr18s_512x512_80k_ade20k
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 38.66
|
||||
inference time (ms/im): 25.87
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -142,7 +142,7 @@ Models:
|
|||
- Name: fcn_hr18_512x512_80k_ade20k
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 22.57
|
||||
inference time (ms/im): 44.31
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -156,7 +156,7 @@ Models:
|
|||
- Name: fcn_hr48_512x512_80k_ade20k
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 21.23
|
||||
inference time (ms/im): 47.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -170,7 +170,7 @@ Models:
|
|||
- Name: fcn_hr18s_512x512_160k_ade20k
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 38.66
|
||||
inference time (ms/im): 25.87
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -184,7 +184,7 @@ Models:
|
|||
- Name: fcn_hr18_512x512_160k_ade20k
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 22.57
|
||||
inference time (ms/im): 44.31
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -198,7 +198,7 @@ Models:
|
|||
- Name: fcn_hr48_512x512_160k_ade20k
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 21.23
|
||||
inference time (ms/im): 47.1
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -212,7 +212,7 @@ Models:
|
|||
- Name: fcn_hr18s_512x512_20k_voc12aug
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 43.36
|
||||
inference time (ms/im): 23.06
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -226,7 +226,7 @@ Models:
|
|||
- Name: fcn_hr18_512x512_20k_voc12aug
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 23.48
|
||||
inference time (ms/im): 42.59
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -240,7 +240,7 @@ Models:
|
|||
- Name: fcn_hr48_512x512_20k_voc12aug
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 22.05
|
||||
inference time (ms/im): 45.35
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -254,7 +254,7 @@ Models:
|
|||
- Name: fcn_hr18s_512x512_40k_voc12aug
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 43.36
|
||||
inference time (ms/im): 23.06
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -268,7 +268,7 @@ Models:
|
|||
- Name: fcn_hr18_512x512_40k_voc12aug
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 23.48
|
||||
inference time (ms/im): 42.59
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -282,7 +282,7 @@ Models:
|
|||
- Name: fcn_hr48_512x512_40k_voc12aug
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 22.05
|
||||
inference time (ms/im): 45.35
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -296,7 +296,7 @@ Models:
|
|||
- Name: fcn_hr48_480x480_40k_pascal_context
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 8.86
|
||||
inference time (ms/im): 112.87
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
@ -310,7 +310,7 @@ Models:
|
|||
- Name: fcn_hr48_480x480_80k_pascal_context
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 8.86
|
||||
inference time (ms/im): 112.87
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
@ -324,7 +324,7 @@ Models:
|
|||
- Name: fcn_hr48_480x480_40k_pascal_context_59
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
@ -338,7 +338,7 @@ Models:
|
|||
- Name: fcn_hr48_480x480_80k_pascal_context
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
|
|
@ -4,7 +4,7 @@ Models:
|
|||
- Name: fcn_m-v2-d8_512x1024_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 14.2
|
||||
inference time (ms/im): 70.42
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -18,7 +18,7 @@ Models:
|
|||
- Name: pspnet_m-v2-d8_512x1024_80k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 11.2
|
||||
inference time (ms/im): 89.29
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -32,7 +32,7 @@ Models:
|
|||
- Name: deeplabv3_m-v2-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 8.4
|
||||
inference time (ms/im): 119.05
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -46,7 +46,7 @@ Models:
|
|||
- Name: deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 8.4
|
||||
inference time (ms/im): 119.05
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -60,7 +60,7 @@ Models:
|
|||
- Name: fcn_m-v2-d8_512x512_160k_ade20k
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 64.4
|
||||
inference time (ms/im): 15.53
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -74,7 +74,7 @@ Models:
|
|||
- Name: pspnet_m-v2-d8_512x512_160k_ade20k
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 57.7
|
||||
inference time (ms/im): 17.33
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -88,7 +88,7 @@ Models:
|
|||
- Name: deeplabv3_m-v2-d8_512x512_160k_ade20k
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 39.9
|
||||
inference time (ms/im): 25.06
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -102,7 +102,7 @@ Models:
|
|||
- Name: deeplabv3plus_m-v2-d8_512x512_160k_ade20k
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 43.1
|
||||
inference time (ms/im): 23.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
|
|
@ -9,7 +9,7 @@ Models:
|
|||
- Name: lraspp_m-v3-d8_512x1024_320k_cityscapes
|
||||
In Collection: LRASPP
|
||||
Metadata:
|
||||
inference time (fps): 15.22
|
||||
inference time (ms/im): 65.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -23,7 +23,7 @@ Models:
|
|||
- Name: lraspp_m-v3-d8_scratch_512x1024_320k_cityscapes
|
||||
In Collection: LRASPP
|
||||
Metadata:
|
||||
inference time (fps): 14.77
|
||||
inference time (ms/im): 67.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -37,7 +37,7 @@ Models:
|
|||
- Name: lraspp_m-v3s-d8_512x1024_320k_cityscapes
|
||||
In Collection: LRASPP
|
||||
Metadata:
|
||||
inference time (fps): 23.64
|
||||
inference time (ms/im): 42.3
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -51,7 +51,7 @@ Models:
|
|||
- Name: lraspp_m-v3s-d8_scratch_512x1024_320k_cityscapes
|
||||
In Collection: LRASPP
|
||||
Metadata:
|
||||
inference time (fps): 24.50
|
||||
inference time (ms/im): 40.82
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
|
|
@ -11,7 +11,7 @@ Models:
|
|||
- Name: nonlocal_r50-d8_512x1024_40k_cityscapes
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 2.72
|
||||
inference time (ms/im): 367.65
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -25,7 +25,7 @@ Models:
|
|||
- Name: nonlocal_r101-d8_512x1024_40k_cityscapes
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 1.95
|
||||
inference time (ms/im): 512.82
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -39,7 +39,7 @@ Models:
|
|||
- Name: nonlocal_r50-d8_769x769_40k_cityscapes
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 1.52
|
||||
inference time (ms/im): 657.89
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -53,7 +53,7 @@ Models:
|
|||
- Name: nonlocal_r101-d8_769x769_40k_cityscapes
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 1.05
|
||||
inference time (ms/im): 952.38
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -67,7 +67,7 @@ Models:
|
|||
- Name: nonlocal_r50-d8_512x1024_80k_cityscapes
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 2.72
|
||||
inference time (ms/im): 367.65
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -81,7 +81,7 @@ Models:
|
|||
- Name: nonlocal_r101-d8_512x1024_80k_cityscapes
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 1.95
|
||||
inference time (ms/im): 512.82
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -95,7 +95,7 @@ Models:
|
|||
- Name: nonlocal_r50-d8_769x769_80k_cityscapes
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 1.52
|
||||
inference time (ms/im): 657.89
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -109,7 +109,7 @@ Models:
|
|||
- Name: nonlocal_r101-d8_769x769_80k_cityscapes
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 1.05
|
||||
inference time (ms/im): 952.38
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -123,7 +123,7 @@ Models:
|
|||
- Name: nonlocal_r50-d8_512x512_80k_ade20k
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 21.37
|
||||
inference time (ms/im): 46.79
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -137,7 +137,7 @@ Models:
|
|||
- Name: nonlocal_r101-d8_512x512_80k_ade20k
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 13.97
|
||||
inference time (ms/im): 71.58
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -151,7 +151,7 @@ Models:
|
|||
- Name: nonlocal_r50-d8_512x512_160k_ade20k
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 21.37
|
||||
inference time (ms/im): 46.79
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -165,7 +165,7 @@ Models:
|
|||
- Name: nonlocal_r101-d8_512x512_160k_ade20k
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 13.97
|
||||
inference time (ms/im): 71.58
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -179,7 +179,7 @@ Models:
|
|||
- Name: nonlocal_r50-d8_512x512_20k_voc12aug
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 21.21
|
||||
inference time (ms/im): 47.15
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -193,7 +193,7 @@ Models:
|
|||
- Name: nonlocal_r101-d8_512x512_20k_voc12aug
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 14.01
|
||||
inference time (ms/im): 71.38
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -207,7 +207,7 @@ Models:
|
|||
- Name: nonlocal_r50-d8_512x512_40k_voc12aug
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 21.21
|
||||
inference time (ms/im): 47.15
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -221,7 +221,7 @@ Models:
|
|||
- Name: nonlocal_r101-d8_512x512_40k_voc12aug
|
||||
In Collection: NonLocal
|
||||
Metadata:
|
||||
inference time (fps): 14.01
|
||||
inference time (ms/im): 71.38
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
|
|
@ -11,7 +11,7 @@ Models:
|
|||
- Name: ocrnet_hr18s_512x1024_40k_cityscapes
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 10.45
|
||||
inference time (ms/im): 95.69
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -25,7 +25,7 @@ Models:
|
|||
- Name: ocrnet_hr18_512x1024_40k_cityscapes
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 7.50
|
||||
inference time (ms/im): 133.33
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -39,7 +39,7 @@ Models:
|
|||
- Name: ocrnet_hr48_512x1024_40k_cityscapes
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 4.22
|
||||
inference time (ms/im): 236.97
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -53,7 +53,7 @@ Models:
|
|||
- Name: ocrnet_hr18s_512x1024_80k_cityscapes
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 10.45
|
||||
inference time (ms/im): 95.69
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -67,7 +67,7 @@ Models:
|
|||
- Name: ocrnet_hr18_512x1024_80k_cityscapes
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 7.50
|
||||
inference time (ms/im): 133.33
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -81,7 +81,7 @@ Models:
|
|||
- Name: ocrnet_hr48_512x1024_80k_cityscapes
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 4.22
|
||||
inference time (ms/im): 236.97
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -95,7 +95,7 @@ Models:
|
|||
- Name: ocrnet_hr18s_512x1024_160k_cityscapes
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 10.45
|
||||
inference time (ms/im): 95.69
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -109,7 +109,7 @@ Models:
|
|||
- Name: ocrnet_hr18_512x1024_160k_cityscapes
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 7.50
|
||||
inference time (ms/im): 133.33
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -123,7 +123,7 @@ Models:
|
|||
- Name: ocrnet_hr48_512x1024_160k_cityscapes
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 4.22
|
||||
inference time (ms/im): 236.97
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -137,7 +137,7 @@ Models:
|
|||
- Name: ocrnet_r101-d8_512x1024_40k_b8_cityscapes
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -151,7 +151,7 @@ Models:
|
|||
- Name: ocrnet_r101-d8_512x1024_40k_b16_cityscapes
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 8.8
|
||||
inference time (ms/im): 113.64
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -165,7 +165,7 @@ Models:
|
|||
- Name: ocrnet_r101-d8_512x1024_80k_b16_cityscapes
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 8.8
|
||||
inference time (ms/im): 113.64
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -179,7 +179,7 @@ Models:
|
|||
- Name: ocrnet_hr18s_512x512_80k_ade20k
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 28.98
|
||||
inference time (ms/im): 34.51
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -193,7 +193,7 @@ Models:
|
|||
- Name: ocrnet_hr18_512x512_80k_ade20k
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 18.93
|
||||
inference time (ms/im): 52.83
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -207,7 +207,7 @@ Models:
|
|||
- Name: ocrnet_hr48_512x512_80k_ade20k
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 16.99
|
||||
inference time (ms/im): 58.86
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -221,7 +221,7 @@ Models:
|
|||
- Name: ocrnet_hr18s_512x512_160k_ade20k
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 28.98
|
||||
inference time (ms/im): 34.51
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -235,7 +235,7 @@ Models:
|
|||
- Name: ocrnet_hr18_512x512_160k_ade20k
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 18.93
|
||||
inference time (ms/im): 52.83
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -249,7 +249,7 @@ Models:
|
|||
- Name: ocrnet_hr48_512x512_160k_ade20k
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 16.99
|
||||
inference time (ms/im): 58.86
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -263,7 +263,7 @@ Models:
|
|||
- Name: ocrnet_hr18s_512x512_20k_voc12aug
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 31.55
|
||||
inference time (ms/im): 31.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -277,7 +277,7 @@ Models:
|
|||
- Name: ocrnet_hr18_512x512_20k_voc12aug
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 19.91
|
||||
inference time (ms/im): 50.23
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -291,7 +291,7 @@ Models:
|
|||
- Name: ocrnet_hr48_512x512_20k_voc12aug
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 17.83
|
||||
inference time (ms/im): 56.09
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -305,7 +305,7 @@ Models:
|
|||
- Name: ocrnet_hr18s_512x512_40k_voc12aug
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 31.55
|
||||
inference time (ms/im): 31.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -319,7 +319,7 @@ Models:
|
|||
- Name: ocrnet_hr18_512x512_40k_voc12aug
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 19.91
|
||||
inference time (ms/im): 50.23
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -333,7 +333,7 @@ Models:
|
|||
- Name: ocrnet_hr48_512x512_40k_voc12aug
|
||||
In Collection: OCRNet
|
||||
Metadata:
|
||||
inference time (fps): 17.83
|
||||
inference time (ms/im): 56.09
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
|
|
@ -10,7 +10,7 @@ Models:
|
|||
- Name: pointrend_r50_512x1024_80k_cityscapes
|
||||
In Collection: PointRend
|
||||
Metadata:
|
||||
inference time (fps): 8.48
|
||||
inference time (ms/im): 117.92
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -24,7 +24,7 @@ Models:
|
|||
- Name: pointrend_r101_512x1024_80k_cityscapes
|
||||
In Collection: PointRend
|
||||
Metadata:
|
||||
inference time (fps): 7.00
|
||||
inference time (ms/im): 142.86
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -38,7 +38,7 @@ Models:
|
|||
- Name: pointrend_r50_512x512_160k_ade20k
|
||||
In Collection: PointRend
|
||||
Metadata:
|
||||
inference time (fps): 17.31
|
||||
inference time (ms/im): 57.77
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -52,7 +52,7 @@ Models:
|
|||
- Name: pointrend_r101_512x512_160k_ade20k
|
||||
In Collection: PointRend
|
||||
Metadata:
|
||||
inference time (fps): 15.50
|
||||
inference time (ms/im): 64.52
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
|
|
@ -11,7 +11,7 @@ Models:
|
|||
- Name: psanet_r50-d8_512x1024_40k_cityscapes
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 3.17
|
||||
inference time (ms/im): 315.46
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -25,7 +25,7 @@ Models:
|
|||
- Name: psanet_r101-d8_512x1024_40k_cityscapes
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 2.20
|
||||
inference time (ms/im): 454.55
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -39,7 +39,7 @@ Models:
|
|||
- Name: psanet_r50-d8_769x769_40k_cityscapes
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 1.40
|
||||
inference time (ms/im): 714.29
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -53,7 +53,7 @@ Models:
|
|||
- Name: psanet_r101-d8_769x769_40k_cityscapes
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 0.98
|
||||
inference time (ms/im): 1020.41
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -67,7 +67,7 @@ Models:
|
|||
- Name: psanet_r50-d8_512x1024_80k_cityscapes
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 3.17
|
||||
inference time (ms/im): 315.46
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -81,7 +81,7 @@ Models:
|
|||
- Name: psanet_r101-d8_512x1024_80k_cityscapes
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 2.20
|
||||
inference time (ms/im): 454.55
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -95,7 +95,7 @@ Models:
|
|||
- Name: psanet_r50-d8_769x769_80k_cityscapes
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 1.40
|
||||
inference time (ms/im): 714.29
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -109,7 +109,7 @@ Models:
|
|||
- Name: psanet_r101-d8_769x769_80k_cityscapes
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 0.98
|
||||
inference time (ms/im): 1020.41
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -123,7 +123,7 @@ Models:
|
|||
- Name: psanet_r50-d8_512x512_80k_ade20k
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 18.91
|
||||
inference time (ms/im): 52.88
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -137,7 +137,7 @@ Models:
|
|||
- Name: psanet_r101-d8_512x512_80k_ade20k
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 13.13
|
||||
inference time (ms/im): 76.16
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -151,7 +151,7 @@ Models:
|
|||
- Name: psanet_r50-d8_512x512_160k_ade20k
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 18.91
|
||||
inference time (ms/im): 52.88
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -165,7 +165,7 @@ Models:
|
|||
- Name: psanet_r101-d8_512x512_160k_ade20k
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 13.13
|
||||
inference time (ms/im): 76.16
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -179,7 +179,7 @@ Models:
|
|||
- Name: psanet_r50-d8_512x512_20k_voc12aug
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 18.24
|
||||
inference time (ms/im): 54.82
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -193,7 +193,7 @@ Models:
|
|||
- Name: psanet_r101-d8_512x512_20k_voc12aug
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 12.63
|
||||
inference time (ms/im): 79.18
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -207,7 +207,7 @@ Models:
|
|||
- Name: psanet_r50-d8_512x512_40k_voc12aug
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 18.24
|
||||
inference time (ms/im): 54.82
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -221,7 +221,7 @@ Models:
|
|||
- Name: psanet_r101-d8_512x512_40k_voc12aug
|
||||
In Collection: PSANet
|
||||
Metadata:
|
||||
inference time (fps): 12.63
|
||||
inference time (ms/im): 79.18
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
|
|
@ -12,7 +12,7 @@ Models:
|
|||
- Name: pspnet_r50-d8_512x1024_40k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 4.07
|
||||
inference time (ms/im): 245.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -26,7 +26,7 @@ Models:
|
|||
- Name: pspnet_r101-d8_512x1024_40k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 2.68
|
||||
inference time (ms/im): 373.13
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -40,7 +40,7 @@ Models:
|
|||
- Name: pspnet_r50-d8_769x769_40k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 1.76
|
||||
inference time (ms/im): 568.18
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -54,7 +54,7 @@ Models:
|
|||
- Name: pspnet_r101-d8_769x769_40k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 1.15
|
||||
inference time (ms/im): 869.57
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -68,7 +68,7 @@ Models:
|
|||
- Name: pspnet_r18-d8_512x1024_80k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 15.71
|
||||
inference time (ms/im): 63.65
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -82,7 +82,7 @@ Models:
|
|||
- Name: pspnet_r50-d8_512x1024_80k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 4.07
|
||||
inference time (ms/im): 245.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -96,7 +96,7 @@ Models:
|
|||
- Name: pspnet_r101-d8_512x1024_80k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 2.68
|
||||
inference time (ms/im): 373.13
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -110,7 +110,7 @@ Models:
|
|||
- Name: pspnet_r18-d8_769x769_80k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 6.20
|
||||
inference time (ms/im): 161.29
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -124,7 +124,7 @@ Models:
|
|||
- Name: pspnet_r50-d8_769x769_80k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 1.76
|
||||
inference time (ms/im): 568.18
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -138,7 +138,7 @@ Models:
|
|||
- Name: pspnet_r101-d8_769x769_80k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 1.15
|
||||
inference time (ms/im): 869.57
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -152,7 +152,7 @@ Models:
|
|||
- Name: pspnet_r18b-d8_512x1024_80k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 16.28
|
||||
inference time (ms/im): 61.43
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -166,7 +166,7 @@ Models:
|
|||
- Name: pspnet_r50b-d8_512x1024_80k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 4.30
|
||||
inference time (ms/im): 232.56
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -180,7 +180,7 @@ Models:
|
|||
- Name: pspnet_r101b-d8_512x1024_80k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 2.76
|
||||
inference time (ms/im): 362.32
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -194,7 +194,7 @@ Models:
|
|||
- Name: pspnet_r18b-d8_769x769_80k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 6.41
|
||||
inference time (ms/im): 156.01
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -208,7 +208,7 @@ Models:
|
|||
- Name: pspnet_r50b-d8_769x769_80k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 1.88
|
||||
inference time (ms/im): 531.91
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -222,7 +222,7 @@ Models:
|
|||
- Name: pspnet_r101b-d8_769x769_80k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 1.17
|
||||
inference time (ms/im): 854.7
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -236,7 +236,7 @@ Models:
|
|||
- Name: pspnet_r50-d8_512x512_80k_ade20k
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 23.53
|
||||
inference time (ms/im): 42.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -250,7 +250,7 @@ Models:
|
|||
- Name: pspnet_r101-d8_512x512_80k_ade20k
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 15.30
|
||||
inference time (ms/im): 65.36
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -264,7 +264,7 @@ Models:
|
|||
- Name: pspnet_r50-d8_512x512_160k_ade20k
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 23.53
|
||||
inference time (ms/im): 42.5
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -278,7 +278,7 @@ Models:
|
|||
- Name: pspnet_r101-d8_512x512_160k_ade20k
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 15.30
|
||||
inference time (ms/im): 65.36
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -292,7 +292,7 @@ Models:
|
|||
- Name: pspnet_r50-d8_512x512_20k_voc12aug
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 23.59
|
||||
inference time (ms/im): 42.39
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -306,7 +306,7 @@ Models:
|
|||
- Name: pspnet_r101-d8_512x512_20k_voc12aug
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 15.02
|
||||
inference time (ms/im): 66.58
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -320,7 +320,7 @@ Models:
|
|||
- Name: pspnet_r50-d8_512x512_40k_voc12aug
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 23.59
|
||||
inference time (ms/im): 42.39
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -334,7 +334,7 @@ Models:
|
|||
- Name: pspnet_r101-d8_512x512_40k_voc12aug
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 15.02
|
||||
inference time (ms/im): 66.58
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -348,7 +348,7 @@ Models:
|
|||
- Name: pspnet_r101-d8_480x480_40k_pascal_context
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 9.68
|
||||
inference time (ms/im): 103.31
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
@ -362,7 +362,7 @@ Models:
|
|||
- Name: pspnet_r101-d8_480x480_80k_pascal_context
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 9.68
|
||||
inference time (ms/im): 103.31
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
@ -376,7 +376,7 @@ Models:
|
|||
- Name: pspnet_r101-d8_480x480_40k_pascal_context
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
@ -390,7 +390,7 @@ Models:
|
|||
- Name: pspnet_r101-d8_480x480_80k_pascal_context_59
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context
|
||||
|
|
|
@ -10,7 +10,7 @@ Models:
|
|||
- Name: fcn_s101-d8_512x1024_80k_cityscapes
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 2.39
|
||||
inference time (ms/im): 418.41
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -24,7 +24,7 @@ Models:
|
|||
- Name: pspnet_s101-d8_512x1024_80k_cityscapes
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 2.52
|
||||
inference time (ms/im): 396.83
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -38,7 +38,7 @@ Models:
|
|||
- Name: deeplabv3_s101-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 1.88
|
||||
inference time (ms/im): 531.91
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -52,7 +52,7 @@ Models:
|
|||
- Name: deeplabv3plus_s101-d8_512x1024_80k_cityscapes
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 2.36
|
||||
inference time (ms/im): 423.73
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -66,7 +66,7 @@ Models:
|
|||
- Name: fcn_s101-d8_512x512_160k_ade20k
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): 12.86
|
||||
inference time (ms/im): 77.76
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -80,7 +80,7 @@ Models:
|
|||
- Name: pspnet_s101-d8_512x512_160k_ade20k
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): 13.02
|
||||
inference time (ms/im): 76.8
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -94,7 +94,7 @@ Models:
|
|||
- Name: deeplabv3_s101-d8_512x512_160k_ade20k
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): 9.28
|
||||
inference time (ms/im): 107.76
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -108,7 +108,7 @@ Models:
|
|||
- Name: deeplabv3plus_s101-d8_512x512_160k_ade20k
|
||||
In Collection: DeepLabV3+
|
||||
Metadata:
|
||||
inference time (fps): 11.96
|
||||
inference time (ms/im): 83.61
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
|
|
@ -11,7 +11,7 @@ Models:
|
|||
- Name: fpn_r50_512x1024_80k_cityscapes
|
||||
In Collection: FPN
|
||||
Metadata:
|
||||
inference time (fps): 13.54
|
||||
inference time (ms/im): 73.86
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -25,7 +25,7 @@ Models:
|
|||
- Name: fpn_r101_512x1024_80k_cityscapes
|
||||
In Collection: FPN
|
||||
Metadata:
|
||||
inference time (fps): 10.29
|
||||
inference time (ms/im): 97.18
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -39,7 +39,7 @@ Models:
|
|||
- Name: fpn_r50_512x512_160k_ade20k
|
||||
In Collection: FPN
|
||||
Metadata:
|
||||
inference time (fps): 55.77
|
||||
inference time (ms/im): 17.93
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -53,7 +53,7 @@ Models:
|
|||
- Name: fpn_r101_512x512_160k_ade20k
|
||||
In Collection: FPN
|
||||
Metadata:
|
||||
inference time (fps): 40.58
|
||||
inference time (ms/im): 24.64
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
|
|
@ -3,7 +3,7 @@ Models:
|
|||
- Name: fcn_unet_s5-d16_64x64_40k_drive
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: DRIVE
|
||||
|
@ -17,7 +17,7 @@ Models:
|
|||
- Name: pspnet_unet_s5-d16_64x64_40k_drive
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: DRIVE
|
||||
|
@ -31,7 +31,7 @@ Models:
|
|||
- Name: deeplabv3_unet_s5-d16_64x64_40k_drive
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: DRIVE
|
||||
|
@ -45,7 +45,7 @@ Models:
|
|||
- Name: fcn_unet_s5-d16_128x128_40k_stare
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: STARE
|
||||
|
@ -59,7 +59,7 @@ Models:
|
|||
- Name: pspnet_unet_s5-d16_128x128_40k_stare
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: STARE
|
||||
|
@ -73,7 +73,7 @@ Models:
|
|||
- Name: deeplabv3_unet_s5-d16_128x128_40k_stare
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: STARE
|
||||
|
@ -87,7 +87,7 @@ Models:
|
|||
- Name: fcn_unet_s5-d16_128x128_40k_chase_db1
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: CHASE_DB1
|
||||
|
@ -101,7 +101,7 @@ Models:
|
|||
- Name: pspnet_unet_s5-d16_128x128_40k_chase_db1
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: CHASE_DB1
|
||||
|
@ -115,7 +115,7 @@ Models:
|
|||
- Name: deeplabv3_unet_s5-d16_128x128_40k_chase_db1
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: CHASE_DB1
|
||||
|
@ -129,7 +129,7 @@ Models:
|
|||
- Name: fcn_unet_s5-d16_256x256_40k_hrf
|
||||
In Collection: FCN
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: HRF
|
||||
|
@ -143,7 +143,7 @@ Models:
|
|||
- Name: pspnet_unet_s5-d16_256x256_40k_hrf
|
||||
In Collection: PSPNet
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: HRF
|
||||
|
@ -157,7 +157,7 @@ Models:
|
|||
- Name: deeplabv3_unet_s5-d16_256x256_40k_hrf
|
||||
In Collection: DeepLabV3
|
||||
Metadata:
|
||||
inference time (fps): None
|
||||
inference time (ms/im): None
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: HRF
|
||||
|
|
|
@ -11,7 +11,7 @@ Models:
|
|||
- Name: upernet_r50_512x1024_40k_cityscapes
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 4.25
|
||||
inference time (ms/im): 235.29
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -25,7 +25,7 @@ Models:
|
|||
- Name: upernet_r101_512x1024_40k_cityscapes
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 3.79
|
||||
inference time (ms/im): 263.85
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -39,7 +39,7 @@ Models:
|
|||
- Name: upernet_r50_769x769_40k_cityscapes
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 1.76
|
||||
inference time (ms/im): 568.18
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -53,7 +53,7 @@ Models:
|
|||
- Name: upernet_r101_769x769_40k_cityscapes
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 1.56
|
||||
inference time (ms/im): 641.03
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -67,7 +67,7 @@ Models:
|
|||
- Name: upernet_r50_512x1024_80k_cityscapes
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 4.25
|
||||
inference time (ms/im): 235.29
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -81,7 +81,7 @@ Models:
|
|||
- Name: upernet_r101_512x1024_80k_cityscapes
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 3.79
|
||||
inference time (ms/im): 263.85
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -95,7 +95,7 @@ Models:
|
|||
- Name: upernet_r50_769x769_80k_cityscapes
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 1.76
|
||||
inference time (ms/im): 568.18
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -109,7 +109,7 @@ Models:
|
|||
- Name: upernet_r101_769x769_80k_cityscapes
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 1.56
|
||||
inference time (ms/im): 641.03
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
|
@ -123,7 +123,7 @@ Models:
|
|||
- Name: upernet_r50_512x512_80k_ade20k
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 23.40
|
||||
inference time (ms/im): 42.74
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -137,7 +137,7 @@ Models:
|
|||
- Name: upernet_r101_512x512_80k_ade20k
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 20.34
|
||||
inference time (ms/im): 49.16
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -151,7 +151,7 @@ Models:
|
|||
- Name: upernet_r50_512x512_160k_ade20k
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 23.40
|
||||
inference time (ms/im): 42.74
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -165,7 +165,7 @@ Models:
|
|||
- Name: upernet_r101_512x512_160k_ade20k
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 20.34
|
||||
inference time (ms/im): 49.16
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
|
@ -179,7 +179,7 @@ Models:
|
|||
- Name: upernet_r50_512x512_20k_voc12aug
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 23.17
|
||||
inference time (ms/im): 43.16
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -193,7 +193,7 @@ Models:
|
|||
- Name: upernet_r101_512x512_20k_voc12aug
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 19.98
|
||||
inference time (ms/im): 50.05
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -207,7 +207,7 @@ Models:
|
|||
- Name: upernet_r50_512x512_40k_voc12aug
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 23.17
|
||||
inference time (ms/im): 43.16
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
@ -221,7 +221,7 @@ Models:
|
|||
- Name: upernet_r101_512x512_40k_voc12aug
|
||||
In Collection: UPerNet
|
||||
Metadata:
|
||||
inference time (fps): 19.98
|
||||
inference time (ms/im): 50.05
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
|
|
Loading…
Reference in New Issue