[Feature] Support MobileNetV2 backbone (#86)

* [Feature] Support MobileNetV2 backbone

* Fixed import

* Fixed test

* Fixed test

* Fixed dilate

* upload model

* update table

* update table

* update bibtex

* update MMCV requirement
pull/98/head^2
Jerry Jiarui XU 2020-09-04 15:35:52 +08:00 committed by GitHub
parent 0c04f52c42
commit 3c6dd9e6a4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 433 additions and 4 deletions

View File

@ -0,0 +1,32 @@
# MobileNetV2: Inverted Residuals and Linear Bottlenecks
## Introduction
```
@inproceedings{sandler2018mobilenetv2,
title={Mobilenetv2: Inverted residuals and linear bottlenecks},
author={Sandler, Mark and Howard, Andrew and Zhu, Menglong and Zhmoginov, Andrey and Chen, Liang-Chieh},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={4510--4520},
year={2018}
}
```
## Results and models
### Cityscapes
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | download |
|------------|----------|-----------|--------:|---------:|----------------|------:|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCN | M-V2-D8 | 512x1024 | 80000 | 3.4 | 14.2 | 61.54 | - | [model](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x1024_80k_cityscapes/fcn_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-d24c28c1.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x1024_80k_cityscapes/fcn_m-v2-d8_512x1024_80k_cityscapes-20200825_124817.log.json) |
| PSPNet | M-V2-D8 | 512x1024 | 80000 | 3.6 | 11.2 | 70.23 | - | [model](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-19e81d51.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes-20200825_124817.log.json) |
| DeepLabV3 | M-V2-D8 | 512x1024 | 80000 | 3.9 | 8.4 | 73.84 | - | [model](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-bef03590.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json) |
| DeepLabV3+ | M-V2-D8 | 512x1024 | 80000 | 5.1 | 8.4 | 75.20 | - | [model](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-d256dd4b.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes-20200825_124836.log.json) |
### ADE20k
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | download |
|------------|----------|-----------|--------:|---------:|----------------|------:|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCN | M-V2-D8 | 512x512 | 160000 | 6.5 | 64.4 | 19.71 | - | [model](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k_20200825_214953-c40e1095.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k-20200825_214953.log.json) |
| PSPNet | M-V2-D8 | 512x512 | 160000 | 6.5 | 57.7 | 29.68 | - | [model](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k_20200825_214953-f5942f7a.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k-20200825_214953.log.json) |
| DeepLabV3 | M-V2-D8 | 512x512 | 160000 | 6.8 | 39.9 | 34.08 | - | [model](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k_20200825_223255-63986343.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k-20200825_223255.log.json) |
| DeepLabV3+ | M-V2-D8 | 512x512 | 160000 | 8.2 | 43.1 | 34.02 | - | [model](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k_20200825_223255-465a01d4.pth) | [log](https://openmmlab.oss-accelerate.aliyuncs.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k-20200825_223255.log.json) |

View File

@ -0,0 +1,12 @@
_base_ = '../deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes.py'
model = dict(
pretrained='mmcls://mobilenet_v2',
backbone=dict(
_delete_=True,
type='MobileNetV2',
widen_factor=1.,
strides=(1, 2, 2, 1, 1, 1, 1),
dilations=(1, 1, 1, 2, 2, 4, 4),
out_indices=(1, 2, 4, 6)),
decode_head=dict(in_channels=320),
auxiliary_head=dict(in_channels=96))

View File

@ -0,0 +1,12 @@
_base_ = '../deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k.py'
model = dict(
pretrained='mmcls://mobilenet_v2',
backbone=dict(
_delete_=True,
type='MobileNetV2',
widen_factor=1.,
strides=(1, 2, 2, 1, 1, 1, 1),
dilations=(1, 1, 1, 2, 2, 4, 4),
out_indices=(1, 2, 4, 6)),
decode_head=dict(in_channels=320),
auxiliary_head=dict(in_channels=96))

View File

@ -0,0 +1,12 @@
_base_ = '../deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py'
model = dict(
pretrained='mmcls://mobilenet_v2',
backbone=dict(
_delete_=True,
type='MobileNetV2',
widen_factor=1.,
strides=(1, 2, 2, 1, 1, 1, 1),
dilations=(1, 1, 1, 2, 2, 4, 4),
out_indices=(1, 2, 4, 6)),
decode_head=dict(in_channels=320, c1_in_channels=24),
auxiliary_head=dict(in_channels=96))

View File

@ -0,0 +1,12 @@
_base_ = '../deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k.py'
model = dict(
pretrained='mmcls://mobilenet_v2',
backbone=dict(
_delete_=True,
type='MobileNetV2',
widen_factor=1.,
strides=(1, 2, 2, 1, 1, 1, 1),
dilations=(1, 1, 1, 2, 2, 4, 4),
out_indices=(1, 2, 4, 6)),
decode_head=dict(in_channels=320, c1_in_channels=24),
auxiliary_head=dict(in_channels=96))

View File

@ -0,0 +1,12 @@
_base_ = '../fcn/fcn_r101-d8_512x1024_80k_cityscapes.py'
model = dict(
pretrained='mmcls://mobilenet_v2',
backbone=dict(
_delete_=True,
type='MobileNetV2',
widen_factor=1.,
strides=(1, 2, 2, 1, 1, 1, 1),
dilations=(1, 1, 1, 2, 2, 4, 4),
out_indices=(1, 2, 4, 6)),
decode_head=dict(in_channels=320),
auxiliary_head=dict(in_channels=96))

View File

@ -0,0 +1,12 @@
_base_ = '../fcn/fcn_r101-d8_512x512_160k_ade20k.py'
model = dict(
pretrained='mmcls://mobilenet_v2',
backbone=dict(
_delete_=True,
type='MobileNetV2',
widen_factor=1.,
strides=(1, 2, 2, 1, 1, 1, 1),
dilations=(1, 1, 1, 2, 2, 4, 4),
out_indices=(1, 2, 4, 6)),
decode_head=dict(in_channels=320),
auxiliary_head=dict(in_channels=96))

View File

@ -0,0 +1,12 @@
_base_ = '../pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py'
model = dict(
pretrained='mmcls://mobilenet_v2',
backbone=dict(
_delete_=True,
type='MobileNetV2',
widen_factor=1.,
strides=(1, 2, 2, 1, 1, 1, 1),
dilations=(1, 1, 1, 2, 2, 4, 4),
out_indices=(1, 2, 4, 6)),
decode_head=dict(in_channels=320),
auxiliary_head=dict(in_channels=96))

View File

@ -0,0 +1,12 @@
_base_ = '../pspnet/pspnet_r101-d8_512x512_160k_ade20k.py'
model = dict(
pretrained='mmcls://mobilenet_v2',
backbone=dict(
_delete_=True,
type='MobileNetV2',
widen_factor=1.,
strides=(1, 2, 2, 1, 1, 1, 1),
dilations=(1, 1, 1, 2, 2, 4, 4),
out_indices=(1, 2, 4, 6)),
decode_head=dict(in_channels=320),
auxiliary_head=dict(in_channels=96))

View File

@ -2,8 +2,8 @@ import mmcv
from .version import __version__, version_info
MMCV_MIN = '1.0.5'
MMCV_MAX = '1.1.1'
MMCV_MIN = '1.1.2'
MMCV_MAX = '1.2.0'
def digit_version(version_str):

View File

@ -1,10 +1,11 @@
from .fast_scnn import FastSCNN
from .hrnet import HRNet
from .mobilenet_v2 import MobileNetV2
from .resnest import ResNeSt
from .resnet import ResNet, ResNetV1c, ResNetV1d
from .resnext import ResNeXt
__all__ = [
'ResNet', 'ResNetV1c', 'ResNetV1d', 'ResNeXt', 'HRNet', 'FastSCNN',
'ResNeSt'
'ResNeSt', 'MobileNetV2'
]

View File

@ -0,0 +1,270 @@
import logging
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import ConvModule, constant_init, kaiming_init
from mmcv.runner import load_checkpoint
from torch.nn.modules.batchnorm import _BatchNorm
from ..builder import BACKBONES
from ..utils import make_divisible
class InvertedResidual(nn.Module):
"""InvertedResidual block for MobileNetV2.
Args:
in_channels (int): The input channels of the InvertedResidual block.
out_channels (int): The output channels of the InvertedResidual block.
stride (int): Stride of the middle (first) 3x3 convolution.
expand_ratio (int): Adjusts number of channels of the hidden layer
in InvertedResidual by this amount.
dilation (int): Dilation rate of depthwise conv. Default: 1
conv_cfg (dict): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU6').
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
Returns:
Tensor: The output tensor
"""
def __init__(self,
in_channels,
out_channels,
stride,
expand_ratio,
dilation=1,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU6'),
with_cp=False):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2], f'stride must in [1, 2]. ' \
f'But received {stride}.'
self.with_cp = with_cp
self.use_res_connect = self.stride == 1 and in_channels == out_channels
hidden_dim = int(round(in_channels * expand_ratio))
layers = []
if expand_ratio != 1:
layers.append(
ConvModule(
in_channels=in_channels,
out_channels=hidden_dim,
kernel_size=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
layers.extend([
ConvModule(
in_channels=hidden_dim,
out_channels=hidden_dim,
kernel_size=3,
stride=stride,
padding=dilation,
dilation=dilation,
groups=hidden_dim,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg),
ConvModule(
in_channels=hidden_dim,
out_channels=out_channels,
kernel_size=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=None)
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
def _inner_forward(x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
return out
@BACKBONES.register_module()
class MobileNetV2(nn.Module):
"""MobileNetV2 backbone.
Args:
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Default: 1.0.
strides (Sequence[int], optional): Strides of the first block of each
layer. If not specified, default config in ``arch_setting`` will
be used.
dilations (Sequence[int]): Dilation of each layer.
out_indices (None or Sequence[int]): Output from which stages.
Default: (7, ).
frozen_stages (int): Stages to be frozen (all param fixed).
Default: -1, which means not freezing any parameters.
conv_cfg (dict): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU6').
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
"""
# Parameters to build layers. 3 parameters are needed to construct a
# layer, from left to right: expand_ratio, channel, num_blocks.
arch_settings = [[1, 16, 1], [6, 24, 2], [6, 32, 3], [6, 64, 4],
[6, 96, 3], [6, 160, 3], [6, 320, 1]]
def __init__(self,
widen_factor=1.,
strides=(1, 2, 2, 2, 1, 2, 1),
dilations=(1, 1, 1, 1, 1, 1, 1),
out_indices=(1, 2, 4, 6),
frozen_stages=-1,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU6'),
norm_eval=False,
with_cp=False):
super(MobileNetV2, self).__init__()
self.widen_factor = widen_factor
self.strides = strides
self.dilations = dilations
assert len(strides) == len(dilations) == len(self.arch_settings)
self.out_indices = out_indices
for index in out_indices:
if index not in range(0, 7):
raise ValueError('the item in out_indices must in '
f'range(0, 8). But received {index}')
if frozen_stages not in range(-1, 7):
raise ValueError('frozen_stages must be in range(-1, 7). '
f'But received {frozen_stages}')
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.norm_eval = norm_eval
self.with_cp = with_cp
self.in_channels = make_divisible(32 * widen_factor, 8)
self.conv1 = ConvModule(
in_channels=3,
out_channels=self.in_channels,
kernel_size=3,
stride=2,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.layers = []
for i, layer_cfg in enumerate(self.arch_settings):
expand_ratio, channel, num_blocks = layer_cfg
stride = self.strides[i]
dilation = self.dilations[i]
out_channels = make_divisible(channel * widen_factor, 8)
inverted_res_layer = self.make_layer(
out_channels=out_channels,
num_blocks=num_blocks,
stride=stride,
dilation=dilation,
expand_ratio=expand_ratio)
layer_name = f'layer{i + 1}'
self.add_module(layer_name, inverted_res_layer)
self.layers.append(layer_name)
def make_layer(self, out_channels, num_blocks, stride, dilation,
expand_ratio):
"""Stack InvertedResidual blocks to build a layer for MobileNetV2.
Args:
out_channels (int): out_channels of block.
num_blocks (int): Number of blocks.
stride (int): Stride of the first block.
dilation (int): Dilation of the first block.
expand_ratio (int): Expand the number of channels of the
hidden layer in InvertedResidual by this ratio.
"""
layers = []
for i in range(num_blocks):
layers.append(
InvertedResidual(
self.in_channels,
out_channels,
stride if i == 0 else 1,
expand_ratio=expand_ratio,
dilation=dilation if i == 0 else 1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
with_cp=self.with_cp))
self.in_channels = out_channels
return nn.Sequential(*layers)
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = logging.getLogger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m, 1)
else:
raise TypeError('pretrained must be a str or None')
def forward(self, x):
x = self.conv1(x)
outs = []
for i, layer_name in enumerate(self.layers):
layer = getattr(self, layer_name)
x = layer(x)
if i in self.out_indices:
outs.append(x)
if len(outs) == 1:
return outs[0]
else:
return tuple(outs)
def _freeze_stages(self):
if self.frozen_stages >= 0:
for param in self.conv1.parameters():
param.requires_grad = False
for i in range(1, self.frozen_stages + 1):
layer = getattr(self, f'layer{i}')
layer.eval()
for param in layer.parameters():
param.requires_grad = False
def train(self, mode=True):
super(MobileNetV2, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()

View File

@ -1,4 +1,5 @@
from .make_divisible import make_divisible
from .res_layer import ResLayer
from .self_attention_block import SelfAttentionBlock
__all__ = ['ResLayer', 'SelfAttentionBlock']
__all__ = ['ResLayer', 'SelfAttentionBlock', 'make_divisible']

View File

@ -0,0 +1,24 @@
def make_divisible(value, divisor, min_value=None, min_ratio=0.9):
"""Make divisible function.
This function rounds the channel number down to the nearest value that can
be divisible by the divisor.
Args:
value (int): The original channel number.
divisor (int): The divisor to fully divide the channel number.
min_value (int, optional): The minimum value of the output channel.
Default: None, means that the minimum value equal to the divisor.
min_ratio (float, optional): The minimum ratio of the rounded channel
number to the original channel number. Default: 0.9.
Returns:
int: The modified output channel number
"""
if min_value is None:
min_value = divisor
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than (1-min_ratio).
if new_value < min_ratio * value:
new_value += divisor
return new_value

View File

@ -157,6 +157,11 @@ def test_sem_fpn_forward():
_test_encoder_decoder_forward('sem_fpn/fpn_r50_512x1024_80k_cityscapes.py')
def test_mobilenet_v2_forward():
_test_encoder_decoder_forward(
'mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes.py')
def get_world_size(process_group):
return 1