mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Feature] Support calculating FLOPs of segmentors (#2706)
## Motivation fix compute flops problems ## Modification Please briefly describe what modification is made in this PR.
This commit is contained in:
parent
6468d3150a
commit
45fae72de5
@ -1,10 +1,23 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
from mmcv.cnn import get_model_complexity_info
|
||||
from mmengine import Config
|
||||
import torch
|
||||
from mmengine import Config, DictAction
|
||||
from mmengine.logging import MMLogger
|
||||
from mmengine.model import revert_sync_batchnorm
|
||||
from mmengine.registry import init_default_scope
|
||||
|
||||
from mmseg.models import build_segmentor
|
||||
from mmseg.models import BaseSegmentor
|
||||
from mmseg.registry import MODELS
|
||||
from mmseg.structures import SegDataSample
|
||||
|
||||
try:
|
||||
from mmengine.analysis import get_model_complexity_info
|
||||
from mmengine.analysis.print_helper import _format_size
|
||||
except ImportError:
|
||||
raise ImportError('Please upgrade mmengine >= 0.6.0 to use this script.')
|
||||
|
||||
|
||||
def parse_args():
|
||||
@ -17,13 +30,33 @@ def parse_args():
|
||||
nargs='+',
|
||||
default=[2048, 1024],
|
||||
help='input image size')
|
||||
parser.add_argument(
|
||||
'--cfg-options',
|
||||
nargs='+',
|
||||
action=DictAction,
|
||||
help='override some settings in the used config, the key-value pair '
|
||||
'in xxx=yyy format will be merged into config file. If the value to '
|
||||
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
||||
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
||||
'Note that the quotation marks are necessary and that no white space '
|
||||
'is allowed.')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
def inference(args: argparse.Namespace, logger: MMLogger) -> dict:
|
||||
config_name = Path(args.config)
|
||||
|
||||
args = parse_args()
|
||||
if not config_name.exists():
|
||||
logger.error(f'Config file {config_name} does not exist')
|
||||
|
||||
cfg: Config = Config.fromfile(config_name)
|
||||
cfg.work_dir = tempfile.TemporaryDirectory().name
|
||||
cfg.log_level = 'WARN'
|
||||
if args.cfg_options is not None:
|
||||
cfg.merge_from_dict(args.cfg_options)
|
||||
|
||||
init_default_scope(cfg.get('scope', 'mmseg'))
|
||||
|
||||
if len(args.shape) == 1:
|
||||
input_shape = (3, args.shape[0], args.shape[0])
|
||||
@ -31,29 +64,60 @@ def main():
|
||||
input_shape = (3, ) + tuple(args.shape)
|
||||
else:
|
||||
raise ValueError('invalid input shape')
|
||||
result = {}
|
||||
|
||||
cfg = Config.fromfile(args.config)
|
||||
cfg.model.pretrained = None
|
||||
model = build_segmentor(
|
||||
cfg.model,
|
||||
train_cfg=cfg.get('train_cfg'),
|
||||
test_cfg=cfg.get('test_cfg')).cuda()
|
||||
model: BaseSegmentor = MODELS.build(cfg.model)
|
||||
if hasattr(model, 'auxiliary_head'):
|
||||
model.auxiliary_head = None
|
||||
if torch.cuda.is_available():
|
||||
model.cuda()
|
||||
model = revert_sync_batchnorm(model)
|
||||
result['ori_shape'] = input_shape[-2:]
|
||||
result['pad_shape'] = input_shape[-2:]
|
||||
data_batch = {
|
||||
'inputs': [torch.rand(input_shape)],
|
||||
'data_samples': [SegDataSample(metainfo=result)]
|
||||
}
|
||||
data = model.data_preprocessor(data_batch)
|
||||
model.eval()
|
||||
if cfg.model.decode_head.type in ['MaskFormerHead', 'Mask2FormerHead']:
|
||||
# TODO: Support MaskFormer and Mask2Former
|
||||
raise NotImplementedError('MaskFormer and Mask2Former are not '
|
||||
'supported yet.')
|
||||
outputs = get_model_complexity_info(
|
||||
model,
|
||||
input_shape,
|
||||
inputs=data['inputs'],
|
||||
show_table=False,
|
||||
show_arch=False)
|
||||
result['flops'] = _format_size(outputs['flops'])
|
||||
result['params'] = _format_size(outputs['params'])
|
||||
result['compute_type'] = 'direct: randomly generate a picture'
|
||||
return result
|
||||
|
||||
if hasattr(model, 'forward_dummy'):
|
||||
model.forward = model.forward_dummy
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
'FLOPs counter is currently not currently supported with {}'.
|
||||
format(model.__class__.__name__))
|
||||
|
||||
flops, params = get_model_complexity_info(model, input_shape)
|
||||
def main():
|
||||
|
||||
args = parse_args()
|
||||
logger = MMLogger.get_instance(name='MMLogger')
|
||||
|
||||
result = inference(args, logger)
|
||||
split_line = '=' * 30
|
||||
print('{0}\nInput shape: {1}\nFlops: {2}\nParams: {3}\n{0}'.format(
|
||||
split_line, input_shape, flops, params))
|
||||
ori_shape = result['ori_shape']
|
||||
pad_shape = result['pad_shape']
|
||||
flops = result['flops']
|
||||
params = result['params']
|
||||
compute_type = result['compute_type']
|
||||
|
||||
if pad_shape != ori_shape:
|
||||
print(f'{split_line}\nUse size divisor set input shape '
|
||||
f'from {ori_shape} to {pad_shape}')
|
||||
print(f'{split_line}\nCompute type: {compute_type}\n'
|
||||
f'Input shape: {pad_shape}\nFlops: {flops}\n'
|
||||
f'Params: {params}\n{split_line}')
|
||||
print('!!!Please be cautious if you use the results in papers. '
|
||||
'You may need to check if all ops are supported and verify that the '
|
||||
'flops computation is correct.')
|
||||
'You may need to check if all ops are supported and verify '
|
||||
'that the flops computation is correct.')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
Loading…
x
Reference in New Issue
Block a user