mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
Merge branch 'limengzhang/fix_optim_wrapper' into 'refactor_dev'
[Fix] Remove OptimizerHook and Add it in OptimWrapper See merge request openmmlab-enterprise/openmmlab-ce/mmsegmentation!47
This commit is contained in:
commit
46723a9543
@ -1,6 +1,6 @@
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer, clip_grad=None)
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(
|
||||
@ -17,7 +17,6 @@ train_cfg = dict(
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
||||
timer=dict(type='IterTimerHook'),
|
||||
logger=dict(type='LoggerHook', interval=50),
|
||||
param_scheduler=dict(type='ParamSchedulerHook'),
|
||||
|
@ -1,6 +1,6 @@
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer, clip_grad=None)
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(
|
||||
@ -16,7 +16,6 @@ train_cfg = dict(type='IterBasedTrainLoop', max_iters=20000, val_interval=2000)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
||||
timer=dict(type='IterTimerHook'),
|
||||
logger=dict(type='LoggerHook', interval=50),
|
||||
param_scheduler=dict(type='ParamSchedulerHook'),
|
||||
|
@ -1,6 +1,6 @@
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer, clip_grad=None)
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(
|
||||
@ -17,7 +17,6 @@ train_cfg = dict(
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
||||
timer=dict(type='IterTimerHook'),
|
||||
logger=dict(type='LoggerHook', interval=50),
|
||||
param_scheduler=dict(type='ParamSchedulerHook'),
|
||||
|
@ -1,6 +1,6 @@
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer, clip_grad=None)
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(
|
||||
@ -16,7 +16,6 @@ train_cfg = dict(type='IterBasedTrainLoop', max_iters=40000, val_interval=4000)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
||||
timer=dict(type='IterTimerHook'),
|
||||
logger=dict(type='LoggerHook', interval=50),
|
||||
param_scheduler=dict(type='ParamSchedulerHook'),
|
||||
|
@ -1,6 +1,6 @@
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer, clip_grad=None)
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(
|
||||
@ -16,7 +16,6 @@ train_cfg = dict(type='IterBasedTrainLoop', max_iters=80000, val_interval=8000)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
||||
timer=dict(type='IterTimerHook'),
|
||||
logger=dict(type='LoggerHook', interval=50),
|
||||
param_scheduler=dict(type='ParamSchedulerHook'),
|
||||
|
@ -31,10 +31,12 @@ optimizer = dict(
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
_delete_=True,
|
||||
type='AmpOptimWrapper',
|
||||
optimizer=optimizer,
|
||||
constructor='LayerDecayOptimizerConstructor',
|
||||
paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.95))
|
||||
paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.95),
|
||||
accumulative_counts=2)
|
||||
|
||||
param_scheduler = [
|
||||
dict(
|
||||
@ -52,7 +54,3 @@ param_scheduler = [
|
||||
train_dataloader = dict(batch_size=1)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
optimizer_config = dict(
|
||||
type='GradientCumulativeFp16OptimizerHook', cumulative_iters=2)
|
||||
|
||||
fp16 = dict()
|
||||
|
@ -1,5 +1,7 @@
|
||||
_base_ = './bisenetv2_fcn_4x4_1024x1024_160k_cityscapes.py'
|
||||
# fp16 settings
|
||||
default_hooks = dict(optimizer=dict(type='Fp16OptimizerHook', loss_scale=512.))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(
|
||||
_delete_=True,
|
||||
type='AmpOptimWrapper',
|
||||
optimizer=optimizer,
|
||||
loss_scale=512.)
|
||||
|
@ -19,14 +19,16 @@ optimizer = dict(
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
_delete_=True,
|
||||
type='AmpOptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg={
|
||||
'decay_rate': 0.9,
|
||||
'decay_type': 'stage_wise',
|
||||
'num_layers': 12
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
constructor='LearningRateDecayOptimizerConstructor',
|
||||
loss_scale='dynamic')
|
||||
|
||||
param_scheduler = [
|
||||
dict(
|
||||
@ -45,8 +47,3 @@ param_scheduler = [
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='Fp16OptimizerHook', loss_scale='dynamic'))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -34,14 +34,16 @@ optimizer = dict(
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
_delete_=True,
|
||||
type='AmpOptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg={
|
||||
'decay_rate': 0.9,
|
||||
'decay_type': 'stage_wise',
|
||||
'num_layers': 12
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
constructor='LearningRateDecayOptimizerConstructor',
|
||||
loss_scale='dynamic')
|
||||
|
||||
param_scheduler = [
|
||||
dict(
|
||||
@ -60,8 +62,3 @@ param_scheduler = [
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='Fp16OptimizerHook', loss_scale='dynamic'))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -34,14 +34,16 @@ optimizer = dict(
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
_delete_=True,
|
||||
type='AmpOptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg={
|
||||
'decay_rate': 0.9,
|
||||
'decay_type': 'stage_wise',
|
||||
'num_layers': 12
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
constructor='LearningRateDecayOptimizerConstructor',
|
||||
loss_scale='dynamic')
|
||||
|
||||
param_scheduler = [
|
||||
dict(
|
||||
@ -60,8 +62,3 @@ param_scheduler = [
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='Fp16OptimizerHook', loss_scale='dynamic'))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -33,14 +33,16 @@ optimizer = dict(
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
_delete_=True,
|
||||
type='AmpOptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg={
|
||||
'decay_rate': 0.9,
|
||||
'decay_type': 'stage_wise',
|
||||
'num_layers': 12
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
constructor='LearningRateDecayOptimizerConstructor',
|
||||
loss_scale='dynamic')
|
||||
|
||||
param_scheduler = [
|
||||
dict(
|
||||
@ -59,8 +61,3 @@ param_scheduler = [
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='Fp16OptimizerHook', loss_scale='dynamic'))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -33,14 +33,16 @@ optimizer = dict(
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
_delete_=True,
|
||||
type='AmpOptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg={
|
||||
'decay_rate': 0.9,
|
||||
'decay_type': 'stage_wise',
|
||||
'num_layers': 6
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
constructor='LearningRateDecayOptimizerConstructor',
|
||||
loss_scale='dynamic')
|
||||
|
||||
param_scheduler = [
|
||||
dict(
|
||||
@ -59,8 +61,3 @@ param_scheduler = [
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='Fp16OptimizerHook', loss_scale='dynamic'))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -34,14 +34,16 @@ optimizer = dict(
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
_delete_=True,
|
||||
type='AmpOptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg={
|
||||
'decay_rate': 0.9,
|
||||
'decay_type': 'stage_wise',
|
||||
'num_layers': 12
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
constructor='LearningRateDecayOptimizerConstructor',
|
||||
loss_scale='dynamic')
|
||||
|
||||
param_scheduler = [
|
||||
dict(
|
||||
@ -60,8 +62,3 @@ param_scheduler = [
|
||||
train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='Fp16OptimizerHook', loss_scale='dynamic'))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -1,5 +1,7 @@
|
||||
_base_ = './deeplabv3_r101-d8_512x1024_80k_cityscapes.py'
|
||||
# fp16 settings
|
||||
default_hooks = dict(optimizer=dict(type='Fp16OptimizerHook', loss_scale=512.))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(
|
||||
_delete_=True,
|
||||
type='AmpOptimWrapper',
|
||||
optimizer=optimizer,
|
||||
loss_scale=512.)
|
||||
|
@ -1,5 +1,7 @@
|
||||
_base_ = './deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py'
|
||||
# fp16 settings
|
||||
default_hooks = dict(optimizer=dict(type='Fp16OptimizerHook', loss_scale=512.))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(
|
||||
_delete_=True,
|
||||
type='AmpOptimWrapper',
|
||||
optimizer=optimizer,
|
||||
loss_scale=512.)
|
||||
|
@ -1,5 +1,7 @@
|
||||
_base_ = './fcn_r101-d8_512x1024_80k_cityscapes.py'
|
||||
# fp16 settings
|
||||
default_hooks = dict(optimizer=dict(type='Fp16OptimizerHook', loss_scale=512.))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(
|
||||
_delete_=True,
|
||||
type='AmpOptimWrapper',
|
||||
optimizer=optimizer,
|
||||
loss_scale=512.)
|
||||
|
@ -81,12 +81,11 @@ model = dict(
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(
|
||||
_delete_=True,
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
optim_wrapper = dict(
|
||||
_delete_=True,
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
clip_grad=dict(max_norm=1, norm_type=2))
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(
|
||||
|
@ -81,12 +81,12 @@ model = dict(
|
||||
test_cfg=dict(mode='whole'))
|
||||
# optimizer
|
||||
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(
|
||||
_delete_=True,
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
optim_wrapper = dict(
|
||||
_delete_=True,
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
clip_grad=dict(max_norm=1, norm_type=2))
|
||||
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(
|
||||
|
@ -80,12 +80,11 @@ model = dict(
|
||||
test_cfg=dict(mode='whole'))
|
||||
# optimizer
|
||||
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(
|
||||
_delete_=True,
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
optim_wrapper = dict(
|
||||
_delete_=True,
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
clip_grad=dict(max_norm=1, norm_type=2))
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(
|
||||
|
@ -81,12 +81,11 @@ model = dict(
|
||||
test_cfg=dict(mode='whole'))
|
||||
# optimizer
|
||||
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(
|
||||
_delete_=True,
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
optim_wrapper = dict(
|
||||
_delete_=True,
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
clip_grad=dict(max_norm=1, norm_type=2))
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(
|
||||
|
@ -39,6 +39,7 @@ optimizer = dict(
|
||||
weight_decay=0.0005)
|
||||
|
||||
optim_wrapper = dict(
|
||||
_delete_=True,
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg=dict(
|
||||
@ -46,13 +47,9 @@ optim_wrapper = dict(
|
||||
'absolute_pos_embed': dict(decay_mult=0.),
|
||||
'relative_position_bias_table': dict(decay_mult=0.),
|
||||
'norm': dict(decay_mult=0.)
|
||||
}))
|
||||
}),
|
||||
clip_grad=dict(max_norm=1, norm_type=2))
|
||||
|
||||
default_hooks = dict(
|
||||
optimizer=dict(
|
||||
_delete_=True,
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(
|
||||
|
@ -1,5 +1,7 @@
|
||||
_base_ = './pspnet_r101-d8_512x1024_80k_cityscapes.py'
|
||||
# fp16 settings
|
||||
default_hooks = dict(optimizer=dict(type='Fp16OptimizerHook', loss_scale=512.))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(
|
||||
_delete_=True,
|
||||
type='AmpOptimWrapper',
|
||||
optimizer=optimizer,
|
||||
loss_scale=512.)
|
||||
|
@ -16,12 +16,11 @@ model = dict(
|
||||
strides=(1, 2, 2, 2)))
|
||||
|
||||
optimizer = dict(_delete_=True, type='AdamW', lr=0.0005, weight_decay=0.05)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(
|
||||
_delete_=True,
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
optim_wrapper = dict(
|
||||
_delete_=True,
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
clip_grad=dict(max_norm=1, norm_type=2))
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(
|
||||
|
@ -14,12 +14,11 @@ model = dict(
|
||||
type='Pretrained', prefix='backbone.', checkpoint=checkpoint)))
|
||||
|
||||
optimizer = dict(_delete_=True, type='AdamW', lr=0.0005, weight_decay=0.05)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(
|
||||
_delete_=True,
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
optim_wrapper = dict(
|
||||
_delete_=True,
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
clip_grad=dict(max_norm=1, norm_type=2))
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(
|
||||
|
Loading…
x
Reference in New Issue
Block a user