Use MMCV's EvalHook in MMSegmentation (#438)
* mmcv eval hook * mmcv evalhook compatible * add warnings * inherit from base class * fix unitest * adapt to mmcv 1.3.1 * fixed unittest * set by_epoch=False * fixed efficient test * update docstring Co-authored-by: Jiarui XU <xvjiarui0826@gmail.com>pull/1801/head
parent
7fbdd6f197
commit
4f2ef8af78
|
@ -2,7 +2,7 @@ import mmcv
|
|||
|
||||
from .version import __version__, version_info
|
||||
|
||||
MMCV_MIN = '1.1.4'
|
||||
MMCV_MIN = '1.3.1'
|
||||
MMCV_MAX = '1.4.0'
|
||||
|
||||
|
||||
|
|
|
@ -1,83 +1,81 @@
|
|||
import os.path as osp
|
||||
|
||||
from mmcv.runner import Hook
|
||||
from torch.utils.data import DataLoader
|
||||
from mmcv.runner import DistEvalHook as _DistEvalHook
|
||||
from mmcv.runner import EvalHook as _EvalHook
|
||||
|
||||
|
||||
class EvalHook(Hook):
|
||||
"""Evaluation hook.
|
||||
class EvalHook(_EvalHook):
|
||||
"""Single GPU EvalHook, with efficient test support.
|
||||
|
||||
Attributes:
|
||||
dataloader (DataLoader): A PyTorch dataloader.
|
||||
interval (int): Evaluation interval (by epochs). Default: 1.
|
||||
"""
|
||||
|
||||
def __init__(self, dataloader, interval=1, by_epoch=False, **eval_kwargs):
|
||||
if not isinstance(dataloader, DataLoader):
|
||||
raise TypeError('dataloader must be a pytorch DataLoader, but got '
|
||||
f'{type(dataloader)}')
|
||||
self.dataloader = dataloader
|
||||
self.interval = interval
|
||||
self.by_epoch = by_epoch
|
||||
self.eval_kwargs = eval_kwargs
|
||||
|
||||
def after_train_iter(self, runner):
|
||||
"""After train epoch hook."""
|
||||
if self.by_epoch or not self.every_n_iters(runner, self.interval):
|
||||
return
|
||||
from mmseg.apis import single_gpu_test
|
||||
runner.log_buffer.clear()
|
||||
results = single_gpu_test(runner.model, self.dataloader, show=False)
|
||||
self.evaluate(runner, results)
|
||||
|
||||
def after_train_epoch(self, runner):
|
||||
"""After train epoch hook."""
|
||||
if not self.by_epoch or not self.every_n_epochs(runner, self.interval):
|
||||
return
|
||||
from mmseg.apis import single_gpu_test
|
||||
runner.log_buffer.clear()
|
||||
results = single_gpu_test(runner.model, self.dataloader, show=False)
|
||||
self.evaluate(runner, results)
|
||||
|
||||
def evaluate(self, runner, results):
|
||||
"""Call evaluate function of dataset."""
|
||||
eval_res = self.dataloader.dataset.evaluate(
|
||||
results, logger=runner.logger, **self.eval_kwargs)
|
||||
for name, val in eval_res.items():
|
||||
runner.log_buffer.output[name] = val
|
||||
runner.log_buffer.ready = True
|
||||
|
||||
|
||||
class DistEvalHook(EvalHook):
|
||||
"""Distributed evaluation hook.
|
||||
|
||||
Attributes:
|
||||
dataloader (DataLoader): A PyTorch dataloader.
|
||||
interval (int): Evaluation interval (by epochs). Default: 1.
|
||||
tmpdir (str | None): Temporary directory to save the results of all
|
||||
processes. Default: None.
|
||||
gpu_collect (bool): Whether to use gpu or cpu to collect results.
|
||||
Args:
|
||||
by_epoch (bool): Determine perform evaluation by epoch or by iteration.
|
||||
If set to True, it will perform by epoch. Otherwise, by iteration.
|
||||
Default: False.
|
||||
efficient_test (bool): Whether save the results as local numpy files to
|
||||
save CPU memory during evaluation. Default: False.
|
||||
Returns:
|
||||
list: The prediction results.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
dataloader,
|
||||
interval=1,
|
||||
gpu_collect=False,
|
||||
by_epoch=False,
|
||||
**eval_kwargs):
|
||||
if not isinstance(dataloader, DataLoader):
|
||||
raise TypeError(
|
||||
'dataloader must be a pytorch DataLoader, but got {}'.format(
|
||||
type(dataloader)))
|
||||
self.dataloader = dataloader
|
||||
self.interval = interval
|
||||
self.gpu_collect = gpu_collect
|
||||
self.by_epoch = by_epoch
|
||||
self.eval_kwargs = eval_kwargs
|
||||
greater_keys = ['mIoU', 'mAcc', 'aAcc']
|
||||
|
||||
def __init__(self, *args, by_epoch=False, efficient_test=False, **kwargs):
|
||||
super().__init__(*args, by_epoch=by_epoch, **kwargs)
|
||||
self.efficient_test = efficient_test
|
||||
|
||||
def after_train_iter(self, runner):
|
||||
"""After train epoch hook."""
|
||||
"""After train epoch hook.
|
||||
|
||||
Override default ``single_gpu_test``.
|
||||
"""
|
||||
if self.by_epoch or not self.every_n_iters(runner, self.interval):
|
||||
return
|
||||
from mmseg.apis import single_gpu_test
|
||||
runner.log_buffer.clear()
|
||||
results = single_gpu_test(
|
||||
runner.model,
|
||||
self.dataloader,
|
||||
show=False,
|
||||
efficient_test=self.efficient_test)
|
||||
self.evaluate(runner, results)
|
||||
|
||||
def after_train_epoch(self, runner):
|
||||
"""After train epoch hook.
|
||||
|
||||
Override default ``single_gpu_test``.
|
||||
"""
|
||||
if not self.by_epoch or not self.every_n_epochs(runner, self.interval):
|
||||
return
|
||||
from mmseg.apis import single_gpu_test
|
||||
runner.log_buffer.clear()
|
||||
results = single_gpu_test(runner.model, self.dataloader, show=False)
|
||||
self.evaluate(runner, results)
|
||||
|
||||
|
||||
class DistEvalHook(_DistEvalHook):
|
||||
"""Distributed EvalHook, with efficient test support.
|
||||
|
||||
Args:
|
||||
by_epoch (bool): Determine perform evaluation by epoch or by iteration.
|
||||
If set to True, it will perform by epoch. Otherwise, by iteration.
|
||||
Default: False.
|
||||
efficient_test (bool): Whether save the results as local numpy files to
|
||||
save CPU memory during evaluation. Default: False.
|
||||
Returns:
|
||||
list: The prediction results.
|
||||
"""
|
||||
|
||||
greater_keys = ['mIoU', 'mAcc', 'aAcc']
|
||||
|
||||
def __init__(self, *args, by_epoch=False, efficient_test=False, **kwargs):
|
||||
super().__init__(*args, by_epoch=by_epoch, **kwargs)
|
||||
self.efficient_test = efficient_test
|
||||
|
||||
def after_train_iter(self, runner):
|
||||
"""After train epoch hook.
|
||||
|
||||
Override default ``multi_gpu_test``.
|
||||
"""
|
||||
if self.by_epoch or not self.every_n_iters(runner, self.interval):
|
||||
return
|
||||
from mmseg.apis import multi_gpu_test
|
||||
|
@ -86,13 +84,17 @@ class DistEvalHook(EvalHook):
|
|||
runner.model,
|
||||
self.dataloader,
|
||||
tmpdir=osp.join(runner.work_dir, '.eval_hook'),
|
||||
gpu_collect=self.gpu_collect)
|
||||
gpu_collect=self.gpu_collect,
|
||||
efficient_test=self.efficient_test)
|
||||
if runner.rank == 0:
|
||||
print('\n')
|
||||
self.evaluate(runner, results)
|
||||
|
||||
def after_train_epoch(self, runner):
|
||||
"""After train epoch hook."""
|
||||
"""After train epoch hook.
|
||||
|
||||
Override default ``multi_gpu_test``.
|
||||
"""
|
||||
if not self.by_epoch or not self.every_n_epochs(runner, self.interval):
|
||||
return
|
||||
from mmseg.apis import multi_gpu_test
|
||||
|
|
|
@ -63,7 +63,7 @@ def test_iter_eval_hook():
|
|||
|
||||
# test EvalHook
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
eval_hook = EvalHook(data_loader)
|
||||
eval_hook = EvalHook(data_loader, by_epoch=False)
|
||||
runner = mmcv.runner.IterBasedRunner(
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
|
@ -143,7 +143,7 @@ def test_dist_eval_hook():
|
|||
|
||||
# test DistEvalHook
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
eval_hook = DistEvalHook(data_loader)
|
||||
eval_hook = DistEvalHook(data_loader, by_epoch=False)
|
||||
runner = mmcv.runner.IterBasedRunner(
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
|
|
Loading…
Reference in New Issue