mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Feature] Add results2img, format_results for ade dataset (#544)
* [Feature] Add results2img, format_results for ade dataset. * clean rebundant code.
This commit is contained in:
parent
8558163753
commit
524425cf93
@ -1,3 +1,10 @@
|
||||
import os.path as osp
|
||||
import tempfile
|
||||
|
||||
import mmcv
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from .builder import DATASETS
|
||||
from .custom import CustomDataset
|
||||
|
||||
@ -82,3 +89,75 @@ class ADE20KDataset(CustomDataset):
|
||||
seg_map_suffix='.png',
|
||||
reduce_zero_label=True,
|
||||
**kwargs)
|
||||
|
||||
def results2img(self, results, imgfile_prefix, to_label_id):
|
||||
"""Write the segmentation results to images.
|
||||
|
||||
Args:
|
||||
results (list[list | tuple | ndarray]): Testing results of the
|
||||
dataset.
|
||||
imgfile_prefix (str): The filename prefix of the png files.
|
||||
If the prefix is "somepath/xxx",
|
||||
the png files will be named "somepath/xxx.png".
|
||||
to_label_id (bool): whether convert output to label_id for
|
||||
submission
|
||||
|
||||
Returns:
|
||||
list[str: str]: result txt files which contains corresponding
|
||||
semantic segmentation images.
|
||||
"""
|
||||
mmcv.mkdir_or_exist(imgfile_prefix)
|
||||
result_files = []
|
||||
prog_bar = mmcv.ProgressBar(len(self))
|
||||
for idx in range(len(self)):
|
||||
result = results[idx]
|
||||
|
||||
filename = self.img_infos[idx]['filename']
|
||||
basename = osp.splitext(osp.basename(filename))[0]
|
||||
|
||||
png_filename = osp.join(imgfile_prefix, f'{basename}.png')
|
||||
|
||||
# The index range of official requirement is from 0 to 150.
|
||||
# But the index range of output is from 0 to 149.
|
||||
# That is because we set reduce_zero_label=True.
|
||||
result = result + 1
|
||||
|
||||
output = Image.fromarray(result.astype(np.uint8))
|
||||
output.save(png_filename)
|
||||
result_files.append(png_filename)
|
||||
|
||||
prog_bar.update()
|
||||
|
||||
return result_files
|
||||
|
||||
def format_results(self, results, imgfile_prefix=None, to_label_id=True):
|
||||
"""Format the results into dir (standard format for ade20k evaluation).
|
||||
|
||||
Args:
|
||||
results (list): Testing results of the dataset.
|
||||
imgfile_prefix (str | None): The prefix of images files. It
|
||||
includes the file path and the prefix of filename, e.g.,
|
||||
"a/b/prefix". If not specified, a temp file will be created.
|
||||
Default: None.
|
||||
to_label_id (bool): whether convert output to label_id for
|
||||
submission. Default: False
|
||||
|
||||
Returns:
|
||||
tuple: (result_files, tmp_dir), result_files is a list containing
|
||||
the image paths, tmp_dir is the temporal directory created
|
||||
for saving json/png files when img_prefix is not specified.
|
||||
"""
|
||||
|
||||
assert isinstance(results, list), 'results must be a list'
|
||||
assert len(results) == len(self), (
|
||||
'The length of results is not equal to the dataset len: '
|
||||
f'{len(results)} != {len(self)}')
|
||||
|
||||
if imgfile_prefix is None:
|
||||
tmp_dir = tempfile.TemporaryDirectory()
|
||||
imgfile_prefix = tmp_dir.name
|
||||
else:
|
||||
tmp_dir = None
|
||||
|
||||
result_files = self.results2img(results, imgfile_prefix, to_label_id)
|
||||
return result_files, tmp_dir
|
||||
|
Loading…
x
Reference in New Issue
Block a user