* add unet

* add unet

* add unet

* update test_unet

* update test_unet

* update test_unet

* update test_unet

* fix bugs

* add init method for unet

* add test of UNet init_weights method

* add registry

* merge upsample

* fix test

* Update mmseg/models/backbones/unet.py

Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com>

* Update mmseg/models/backbones/unet.py

Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com>

* split UpConvBlock from UNet

* use reversed

* rename upsample module

* rename upsample module

* rename upsample module

* rename upsample module

Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com>
pull/1801/head
Junjun2016 2020-10-22 02:24:38 +08:00 committed by GitHub
parent eaefe54e8d
commit 5956451014
5 changed files with 1367 additions and 2 deletions

View File

@ -4,8 +4,9 @@ from .mobilenet_v2 import MobileNetV2
from .resnest import ResNeSt
from .resnet import ResNet, ResNetV1c, ResNetV1d
from .resnext import ResNeXt
from .unet import UNet
__all__ = [
'ResNet', 'ResNetV1c', 'ResNetV1d', 'ResNeXt', 'HRNet', 'FastSCNN',
'ResNeSt', 'MobileNetV2'
'ResNeSt', 'MobileNetV2', 'UNet'
]

View File

@ -0,0 +1,428 @@
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import (UPSAMPLE_LAYERS, ConvModule, build_activation_layer,
build_norm_layer, constant_init, kaiming_init)
from mmcv.runner import load_checkpoint
from mmcv.utils.parrots_wrapper import _BatchNorm
from mmseg.utils import get_root_logger
from ..builder import BACKBONES
from ..utils import UpConvBlock
class BasicConvBlock(nn.Module):
"""Basic convolutional block for UNet.
This module consists of several plain convolutional layers.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
num_convs (int): Number of convolutional layers. Default: 2.
stride (int): Whether use stride convolution to downsample
the input feature map. If stride=2, it only uses stride convolution
in the first convolutional layer to downsample the input feature
map. Options are 1 or 2. Default: 1.
dilation (int): Whether use dilated convolution to expand the
receptive field. Set dilation rate of each convolutional layer and
the dilation rate of the first convolutional layer is always 1.
Default: 1.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
conv_cfg (dict | None): Config dict for convolution layer.
Default: None.
norm_cfg (dict | None): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict | None): Config dict for activation layer in ConvModule.
Default: dict(type='ReLU').
dcn (bool): Use deformable convoluton in convolutional layer or not.
Default: None.
plugins (dict): plugins for convolutional layers. Default: None.
"""
def __init__(self,
in_channels,
out_channels,
num_convs=2,
stride=1,
dilation=1,
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
dcn=None,
plugins=None):
super(BasicConvBlock, self).__init__()
assert dcn is None, 'Not implemented yet.'
assert plugins is None, 'Not implemented yet.'
self.with_cp = with_cp
convs = []
for i in range(num_convs):
convs.append(
ConvModule(
in_channels=in_channels if i == 0 else out_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride if i == 0 else 1,
dilation=1 if i == 0 else dilation,
padding=1 if i == 0 else dilation,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
self.convs = nn.Sequential(*convs)
def forward(self, x):
"""Forward function."""
if self.with_cp and x.requires_grad:
out = cp.checkpoint(self.convs, x)
else:
out = self.convs(x)
return out
@UPSAMPLE_LAYERS.register_module()
class DeconvModule(nn.Module):
"""Deconvolution upsample module in decoder for UNet (2X upsample).
This module uses deconvolution to upsample feature map in the decoder
of UNet.
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
norm_cfg (dict | None): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict | None): Config dict for activation layer in ConvModule.
Default: dict(type='ReLU').
kernel_size (int): Kernel size of the convolutional layer. Default: 4.
"""
def __init__(self,
in_channels,
out_channels,
with_cp=False,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
*,
kernel_size=4,
scale_factor=2):
super(DeconvModule, self).__init__()
assert (kernel_size - scale_factor >= 0) and\
(kernel_size - scale_factor) % 2 == 0,\
f'kernel_size should be greater than or equal to scale_factor '\
f'and (kernel_size - scale_factor) should be even numbers, '\
f'while the kernel size is {kernel_size} and scale_factor is '\
f'{scale_factor}.'
stride = scale_factor
padding = (kernel_size - scale_factor) // 2
self.with_cp = with_cp
deconv = nn.ConvTranspose2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding)
norm_name, norm = build_norm_layer(norm_cfg, out_channels)
activate = build_activation_layer(act_cfg)
self.deconv_upsamping = nn.Sequential(deconv, norm, activate)
def forward(self, x):
"""Forward function."""
if self.with_cp and x.requires_grad:
out = cp.checkpoint(self.deconv_upsamping, x)
else:
out = self.deconv_upsamping(x)
return out
@UPSAMPLE_LAYERS.register_module()
class InterpConv(nn.Module):
"""Interpolation upsample module in decoder for UNet.
This module uses interpolation to upsample feature map in the decoder
of UNet. It consists of one interpolation upsample layer and one
convolutional layer. It can be one interpolation upsample layer followed
by one convolutional layer (conv_first=False) or one convolutional layer
followed by one interpolation upsample layer (conv_first=True).
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
norm_cfg (dict | None): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict | None): Config dict for activation layer in ConvModule.
Default: dict(type='ReLU').
conv_cfg (dict | None): Config dict for convolution layer.
Default: None.
conv_first (bool): Whether convolutional layer or interpolation
upsample layer first. Default: False. It means interpolation
upsample layer followed by one convolutional layer.
kernel_size (int): Kernel size of the convolutional layer. Default: 1.
stride (int): Stride of the convolutional layer. Default: 1.
padding (int): Padding of the convolutional layer. Default: 1.
upsampe_cfg (dict): Interpolation config of the upsample layer.
Default: dict(
scale_factor=2, mode='bilinear', align_corners=False).
"""
def __init__(self,
in_channels,
out_channels,
with_cp=False,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
*,
conv_cfg=None,
conv_first=False,
kernel_size=1,
stride=1,
padding=0,
upsampe_cfg=dict(
scale_factor=2, mode='bilinear', align_corners=False)):
super(InterpConv, self).__init__()
self.with_cp = with_cp
conv = ConvModule(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
upsample = nn.Upsample(**upsampe_cfg)
if conv_first:
self.interp_upsample = nn.Sequential(conv, upsample)
else:
self.interp_upsample = nn.Sequential(upsample, conv)
def forward(self, x):
"""Forward function."""
if self.with_cp and x.requires_grad:
out = cp.checkpoint(self.interp_upsample, x)
else:
out = self.interp_upsample(x)
return out
@BACKBONES.register_module()
class UNet(nn.Module):
"""UNet backbone.
U-Net: Convolutional Networks for Biomedical Image Segmentation.
https://arxiv.org/pdf/1505.04597.pdf
Args:
in_channels (int): Number of input image channels. Default" 3.
base_channels (int): Number of base channels of each stage.
The output channels of the first stage. Default: 64.
num_stages (int): Number of stages in encoder, normally 5. Default: 5.
strides (Sequence[int 1 | 2]): Strides of each stage in encoder.
len(strides) is equal to num_stages. Normally the stride of the
first stage in encoder is 1. If strides[i]=2, it uses stride
convolution to downsample in the correspondance encoder stage.
Default: (1, 1, 1, 1, 1).
enc_num_convs (Sequence[int]): Number of convolutional layers in the
convolution block of the correspondance encoder stage.
Default: (2, 2, 2, 2, 2).
dec_num_convs (Sequence[int]): Number of convolutional layers in the
convolution block of the correspondance decoder stage.
Default: (2, 2, 2, 2).
downsamples (Sequence[int]): Whether use MaxPool to downsample the
feature map after the first stage of encoder
(stages: [1, num_stages)). If the correspondance encoder stage use
stride convolution (strides[i]=2), it will never use MaxPool to
downsample, even downsamples[i-1]=True.
Default: (True, True, True, True).
enc_dilations (Sequence[int]): Dilation rate of each stage in encoder.
Default: (1, 1, 1, 1, 1).
dec_dilations (Sequence[int]): Dilation rate of each stage in decoder.
Default: (1, 1, 1, 1).
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
conv_cfg (dict | None): Config dict for convolution layer.
Default: None.
norm_cfg (dict | None): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict | None): Config dict for activation layer in ConvModule.
Default: dict(type='ReLU').
upsample_cfg (dict): The upsample config of the upsample module in
decoder. Default: dict(type='InterpConv').
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
dcn (bool): Use deformable convoluton in convolutional layer or not.
Default: None.
plugins (dict): plugins for convolutional layers. Default: None.
Notice:
The input image size should be devisible by the whole downsample rate
of the encoder. More detail of the whole downsample rate can be found
in UNet._check_input_devisible.
"""
def __init__(self,
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, True),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1),
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
upsample_cfg=dict(type='InterpConv'),
norm_eval=False,
dcn=None,
plugins=None):
super(UNet, self).__init__()
assert dcn is None, 'Not implemented yet.'
assert plugins is None, 'Not implemented yet.'
assert len(strides) == num_stages, \
'The length of strides should be equal to num_stages, '\
f'while the strides is {strides}, the length of '\
f'strides is {len(strides)}, and the num_stages is '\
f'{num_stages}.'
assert len(enc_num_convs) == num_stages, \
'The length of enc_num_convs should be equal to num_stages, '\
f'while the enc_num_convs is {enc_num_convs}, the length of '\
f'enc_num_convs is {len(enc_num_convs)}, and the num_stages is '\
f'{num_stages}.'
assert len(dec_num_convs) == (num_stages-1), \
'The length of dec_num_convs should be equal to (num_stages-1), '\
f'while the dec_num_convs is {dec_num_convs}, the length of '\
f'dec_num_convs is {len(dec_num_convs)}, and the num_stages is '\
f'{num_stages}.'
assert len(downsamples) == (num_stages-1), \
'The length of downsamples should be equal to (num_stages-1), '\
f'while the downsamples is {downsamples}, the length of '\
f'downsamples is {len(downsamples)}, and the num_stages is '\
f'{num_stages}.'
assert len(enc_dilations) == num_stages, \
'The length of enc_dilations should be equal to num_stages, '\
f'while the enc_dilations is {enc_dilations}, the length of '\
f'enc_dilations is {len(enc_dilations)}, and the num_stages is '\
f'{num_stages}.'
assert len(dec_dilations) == (num_stages-1), \
'The length of dec_dilations should be equal to (num_stages-1), '\
f'while the dec_dilations is {dec_dilations}, the length of '\
f'dec_dilations is {len(dec_dilations)}, and the num_stages is '\
f'{num_stages}.'
self.num_stages = num_stages
self.strides = strides
self.downsamples = downsamples
self.norm_eval = norm_eval
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
for i in range(num_stages):
enc_conv_block = []
if i != 0:
if strides[i] == 1 and downsamples[i - 1]:
enc_conv_block.append(nn.MaxPool2d(kernel_size=2))
upsample = (strides[i] != 1 or downsamples[i - 1])
self.decoder.append(
UpConvBlock(
conv_block=BasicConvBlock,
in_channels=base_channels * 2**i,
skip_channels=base_channels * 2**(i - 1),
out_channels=base_channels * 2**(i - 1),
num_convs=dec_num_convs[i - 1],
stride=1,
dilation=dec_dilations[i - 1],
with_cp=with_cp,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
upsample_cfg=upsample_cfg if upsample else None,
dcn=None,
plugins=None))
enc_conv_block.append(
BasicConvBlock(
in_channels=in_channels,
out_channels=base_channels * 2**i,
num_convs=enc_num_convs[i],
stride=strides[i],
dilation=enc_dilations[i],
with_cp=with_cp,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
dcn=None,
plugins=None))
self.encoder.append((nn.Sequential(*enc_conv_block)))
in_channels = base_channels * 2**i
def forward(self, x):
self._check_input_devisible(x)
enc_outs = []
for enc in self.encoder:
x = enc(x)
enc_outs.append(x)
dec_outs = [x]
for i in reversed(range(len(self.decoder))):
x = self.decoder[i](enc_outs[i], x)
dec_outs.append(x)
return dec_outs
def train(self, mode=True):
"""Convert the model into training mode while keep normalization layer
freezed."""
super(UNet, self).train(mode)
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()
def _check_input_devisible(self, x):
h, w = x.shape[-2:]
whole_downsample_rate = 1
for i in range(1, self.num_stages):
if self.strides[i] == 2 or self.downsamples[i - 1]:
whole_downsample_rate *= 2
assert (h % whole_downsample_rate == 0) \
and (w % whole_downsample_rate == 0),\
f'The input image size {(h, w)} should be devisible by the whole '\
f'downsample rate {whole_downsample_rate}, when num_stages is '\
f'{self.num_stages}, strides is {self.strides}, and downsamples '\
f'is {self.downsamples}.'
def init_weights(self, pretrained=None):
"""Initialize the weights in backbone.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m, 1)
else:
raise TypeError('pretrained must be a str or None')

View File

@ -2,7 +2,9 @@ from .inverted_residual import InvertedResidual
from .make_divisible import make_divisible
from .res_layer import ResLayer
from .self_attention_block import SelfAttentionBlock
from .up_conv_block import UpConvBlock
__all__ = [
'ResLayer', 'SelfAttentionBlock', 'make_divisible', 'InvertedResidual'
'ResLayer', 'SelfAttentionBlock', 'make_divisible', 'InvertedResidual',
'UpConvBlock'
]

View File

@ -0,0 +1,101 @@
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, build_upsample_layer
class UpConvBlock(nn.Module):
"""Upsample convolution block in decoder for UNet.
This upsample convolution block consists of one upsample module
followed by one convolution block. The upsample module expands the
high-level low-resolution feature map and the convolution block fuses
the upsampled high-level low-resolution feature map and the low-level
high-resolution feature map from encoder.
Args:
conv_block (nn.Sequential): Sequential of convolutional layers.
in_channels (int): Number of input channels of the high-level
skip_channels (int): Number of input channels of the low-level
high-resolution feature map from encoder.
out_channels (int): Number of output channels.
num_convs (int): Number of convolutional layers in the conv_block.
Default: 2.
stride (int): Stride of convolutional layer in conv_block. Default: 1.
dilation (int): Dilation rate of convolutional layer in conv_block.
Default: 1.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
conv_cfg (dict | None): Config dict for convolution layer.
Default: None.
norm_cfg (dict | None): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict | None): Config dict for activation layer in ConvModule.
Default: dict(type='ReLU').
upsample_cfg (dict): The upsample config of the upsample module in
decoder. Default: dict(type='InterpConv'). If the size of
high-level feature map is the same as that of skip feature map
(low-level feature map from encoder), it does not need upsample the
high-level feature map and the upsample_cfg is None.
dcn (bool): Use deformable convoluton in convolutional layer or not.
Default: None.
plugins (dict): plugins for convolutional layers. Default: None.
"""
def __init__(self,
conv_block,
in_channels,
skip_channels,
out_channels,
num_convs=2,
stride=1,
dilation=1,
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
upsample_cfg=dict(type='InterpConv'),
dcn=None,
plugins=None):
super(UpConvBlock, self).__init__()
assert dcn is None, 'Not implemented yet.'
assert plugins is None, 'Not implemented yet.'
self.conv_block = conv_block(
in_channels=2 * skip_channels,
out_channels=out_channels,
num_convs=num_convs,
stride=stride,
dilation=dilation,
with_cp=with_cp,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
dcn=None,
plugins=None)
if upsample_cfg is not None:
self.upsample = build_upsample_layer(
cfg=upsample_cfg,
in_channels=in_channels,
out_channels=skip_channels,
with_cp=with_cp,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
else:
self.upsample = ConvModule(
in_channels,
skip_channels,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
def forward(self, skip, x):
"""Forward function."""
x = self.upsample(x)
out = torch.cat([skip, x], dim=1)
out = self.conv_block(out)
return out

View File

@ -0,0 +1,833 @@
import pytest
import torch
from mmcv.cnn import ConvModule
from mmcv.utils.parrots_wrapper import _BatchNorm
from torch import nn
from mmseg.models.backbones.unet import (BasicConvBlock, DeconvModule,
InterpConv, UNet, UpConvBlock)
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_unet_basic_conv_block():
with pytest.raises(AssertionError):
# Not implemented yet.
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
BasicConvBlock(64, 64, dcn=dcn)
with pytest.raises(AssertionError):
# Not implemented yet.
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
BasicConvBlock(64, 64, plugins=plugins)
with pytest.raises(AssertionError):
# Not implemented yet
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2')
]
BasicConvBlock(64, 64, plugins=plugins)
# test BasicConvBlock with checkpoint forward
block = BasicConvBlock(16, 16, with_cp=True)
assert block.with_cp
x = torch.randn(1, 16, 64, 64, requires_grad=True)
x_out = block(x)
assert x_out.shape == torch.Size([1, 16, 64, 64])
block = BasicConvBlock(16, 16, with_cp=False)
assert not block.with_cp
x = torch.randn(1, 16, 64, 64)
x_out = block(x)
assert x_out.shape == torch.Size([1, 16, 64, 64])
# test BasicConvBlock with stride convolution to downsample
block = BasicConvBlock(16, 16, stride=2)
x = torch.randn(1, 16, 64, 64)
x_out = block(x)
assert x_out.shape == torch.Size([1, 16, 32, 32])
# test BasicConvBlock structure and forward
block = BasicConvBlock(16, 64, num_convs=3, dilation=3)
assert block.convs[0].conv.in_channels == 16
assert block.convs[0].conv.out_channels == 64
assert block.convs[0].conv.kernel_size == (3, 3)
assert block.convs[0].conv.dilation == (1, 1)
assert block.convs[0].conv.padding == (1, 1)
assert block.convs[1].conv.in_channels == 64
assert block.convs[1].conv.out_channels == 64
assert block.convs[1].conv.kernel_size == (3, 3)
assert block.convs[1].conv.dilation == (3, 3)
assert block.convs[1].conv.padding == (3, 3)
assert block.convs[2].conv.in_channels == 64
assert block.convs[2].conv.out_channels == 64
assert block.convs[2].conv.kernel_size == (3, 3)
assert block.convs[2].conv.dilation == (3, 3)
assert block.convs[2].conv.padding == (3, 3)
def test_deconv_module():
with pytest.raises(AssertionError):
# kernel_size should be greater than or equal to scale_factor and
# (kernel_size - scale_factor) should be even numbers
DeconvModule(64, 32, kernel_size=1, scale_factor=2)
with pytest.raises(AssertionError):
# kernel_size should be greater than or equal to scale_factor and
# (kernel_size - scale_factor) should be even numbers
DeconvModule(64, 32, kernel_size=3, scale_factor=2)
with pytest.raises(AssertionError):
# kernel_size should be greater than or equal to scale_factor and
# (kernel_size - scale_factor) should be even numbers
DeconvModule(64, 32, kernel_size=5, scale_factor=4)
# test DeconvModule with checkpoint forward and upsample 2X.
block = DeconvModule(64, 32, with_cp=True)
assert block.with_cp
x = torch.randn(1, 64, 128, 128, requires_grad=True)
x_out = block(x)
assert x_out.shape == torch.Size([1, 32, 256, 256])
block = DeconvModule(64, 32, with_cp=False)
assert not block.with_cp
x = torch.randn(1, 64, 128, 128)
x_out = block(x)
assert x_out.shape == torch.Size([1, 32, 256, 256])
# test DeconvModule with different kernel size for upsample 2X.
x = torch.randn(1, 64, 64, 64)
block = DeconvModule(64, 32, kernel_size=2, scale_factor=2)
x_out = block(x)
assert x_out.shape == torch.Size([1, 32, 128, 128])
block = DeconvModule(64, 32, kernel_size=6, scale_factor=2)
x_out = block(x)
assert x_out.shape == torch.Size([1, 32, 128, 128])
# test DeconvModule with different kernel size for upsample 4X.
x = torch.randn(1, 64, 64, 64)
block = DeconvModule(64, 32, kernel_size=4, scale_factor=4)
x_out = block(x)
assert x_out.shape == torch.Size([1, 32, 256, 256])
block = DeconvModule(64, 32, kernel_size=6, scale_factor=4)
x_out = block(x)
assert x_out.shape == torch.Size([1, 32, 256, 256])
def test_interp_conv():
# test InterpConv with checkpoint forward and upsample 2X.
block = InterpConv(64, 32, with_cp=True)
assert block.with_cp
x = torch.randn(1, 64, 128, 128, requires_grad=True)
x_out = block(x)
assert x_out.shape == torch.Size([1, 32, 256, 256])
block = InterpConv(64, 32, with_cp=False)
assert not block.with_cp
x = torch.randn(1, 64, 128, 128)
x_out = block(x)
assert x_out.shape == torch.Size([1, 32, 256, 256])
# test InterpConv with conv_first=False for upsample 2X.
block = InterpConv(64, 32, conv_first=False)
x = torch.randn(1, 64, 128, 128)
x_out = block(x)
assert isinstance(block.interp_upsample[0], nn.Upsample)
assert isinstance(block.interp_upsample[1], ConvModule)
assert x_out.shape == torch.Size([1, 32, 256, 256])
# test InterpConv with conv_first=True for upsample 2X.
block = InterpConv(64, 32, conv_first=True)
x = torch.randn(1, 64, 128, 128)
x_out = block(x)
assert isinstance(block.interp_upsample[0], ConvModule)
assert isinstance(block.interp_upsample[1], nn.Upsample)
assert x_out.shape == torch.Size([1, 32, 256, 256])
# test InterpConv with bilinear upsample for upsample 2X.
block = InterpConv(
64,
32,
conv_first=False,
upsampe_cfg=dict(scale_factor=2, mode='bilinear', align_corners=False))
x = torch.randn(1, 64, 128, 128)
x_out = block(x)
assert isinstance(block.interp_upsample[0], nn.Upsample)
assert isinstance(block.interp_upsample[1], ConvModule)
assert x_out.shape == torch.Size([1, 32, 256, 256])
assert block.interp_upsample[0].mode == 'bilinear'
# test InterpConv with nearest upsample for upsample 2X.
block = InterpConv(
64,
32,
conv_first=False,
upsampe_cfg=dict(scale_factor=2, mode='nearest'))
x = torch.randn(1, 64, 128, 128)
x_out = block(x)
assert isinstance(block.interp_upsample[0], nn.Upsample)
assert isinstance(block.interp_upsample[1], ConvModule)
assert x_out.shape == torch.Size([1, 32, 256, 256])
assert block.interp_upsample[0].mode == 'nearest'
def test_up_conv_block():
with pytest.raises(AssertionError):
# Not implemented yet.
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
UpConvBlock(BasicConvBlock, 64, 32, 32, dcn=dcn)
with pytest.raises(AssertionError):
# Not implemented yet.
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
UpConvBlock(BasicConvBlock, 64, 32, 32, plugins=plugins)
with pytest.raises(AssertionError):
# Not implemented yet
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2')
]
UpConvBlock(BasicConvBlock, 64, 32, 32, plugins=plugins)
# test UpConvBlock with checkpoint forward and upsample 2X.
block = UpConvBlock(BasicConvBlock, 64, 32, 32, with_cp=True)
skip_x = torch.randn(1, 32, 256, 256, requires_grad=True)
x = torch.randn(1, 64, 128, 128, requires_grad=True)
x_out = block(skip_x, x)
assert x_out.shape == torch.Size([1, 32, 256, 256])
# test UpConvBlock with upsample=True for upsample 2X. The spatial size of
# skip_x is 2X larger than x.
block = UpConvBlock(
BasicConvBlock, 64, 32, 32, upsample_cfg=dict(type='InterpConv'))
skip_x = torch.randn(1, 32, 256, 256)
x = torch.randn(1, 64, 128, 128)
x_out = block(skip_x, x)
assert x_out.shape == torch.Size([1, 32, 256, 256])
# test UpConvBlock with upsample=False for upsample 2X. The spatial size of
# skip_x is the same as that of x.
block = UpConvBlock(BasicConvBlock, 64, 32, 32, upsample_cfg=None)
skip_x = torch.randn(1, 32, 256, 256)
x = torch.randn(1, 64, 256, 256)
x_out = block(skip_x, x)
assert x_out.shape == torch.Size([1, 32, 256, 256])
# test UpConvBlock with different upsample method for upsample 2X.
# The upsample method is interpolation upsample (bilinear or nearest).
block = UpConvBlock(
BasicConvBlock,
64,
32,
32,
upsample_cfg=dict(
type='InterpConv',
upsampe_cfg=dict(
scale_factor=2, mode='bilinear', align_corners=False)))
skip_x = torch.randn(1, 32, 256, 256)
x = torch.randn(1, 64, 128, 128)
x_out = block(skip_x, x)
assert x_out.shape == torch.Size([1, 32, 256, 256])
# test UpConvBlock with different upsample method for upsample 2X.
# The upsample method is deconvolution upsample.
block = UpConvBlock(
BasicConvBlock,
64,
32,
32,
upsample_cfg=dict(type='DeconvModule', kernel_size=4, scale_factor=2))
skip_x = torch.randn(1, 32, 256, 256)
x = torch.randn(1, 64, 128, 128)
x_out = block(skip_x, x)
assert x_out.shape == torch.Size([1, 32, 256, 256])
# test BasicConvBlock structure and forward
block = UpConvBlock(
conv_block=BasicConvBlock,
in_channels=64,
skip_channels=32,
out_channels=32,
num_convs=3,
dilation=3,
upsample_cfg=dict(
type='InterpConv',
upsampe_cfg=dict(
scale_factor=2, mode='bilinear', align_corners=False)))
skip_x = torch.randn(1, 32, 256, 256)
x = torch.randn(1, 64, 128, 128)
x_out = block(skip_x, x)
assert x_out.shape == torch.Size([1, 32, 256, 256])
assert block.conv_block.convs[0].conv.in_channels == 64
assert block.conv_block.convs[0].conv.out_channels == 32
assert block.conv_block.convs[0].conv.kernel_size == (3, 3)
assert block.conv_block.convs[0].conv.dilation == (1, 1)
assert block.conv_block.convs[0].conv.padding == (1, 1)
assert block.conv_block.convs[1].conv.in_channels == 32
assert block.conv_block.convs[1].conv.out_channels == 32
assert block.conv_block.convs[1].conv.kernel_size == (3, 3)
assert block.conv_block.convs[1].conv.dilation == (3, 3)
assert block.conv_block.convs[1].conv.padding == (3, 3)
assert block.conv_block.convs[2].conv.in_channels == 32
assert block.conv_block.convs[2].conv.out_channels == 32
assert block.conv_block.convs[2].conv.kernel_size == (3, 3)
assert block.conv_block.convs[2].conv.dilation == (3, 3)
assert block.conv_block.convs[2].conv.padding == (3, 3)
assert block.upsample.interp_upsample[1].conv.in_channels == 64
assert block.upsample.interp_upsample[1].conv.out_channels == 32
assert block.upsample.interp_upsample[1].conv.kernel_size == (1, 1)
assert block.upsample.interp_upsample[1].conv.dilation == (1, 1)
assert block.upsample.interp_upsample[1].conv.padding == (0, 0)
def test_unet():
with pytest.raises(AssertionError):
# Not implemented yet.
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
UNet(3, 64, 5, dcn=dcn)
with pytest.raises(AssertionError):
# Not implemented yet.
plugins = [
dict(
cfg=dict(type='ContextBlock', ratio=1. / 16),
position='after_conv3')
]
UNet(3, 64, 5, plugins=plugins)
with pytest.raises(AssertionError):
# Not implemented yet
plugins = [
dict(
cfg=dict(
type='GeneralizedAttention',
spatial_range=-1,
num_heads=8,
attention_type='0010',
kv_stride=2),
position='after_conv2')
]
UNet(3, 64, 5, plugins=plugins)
with pytest.raises(AssertionError):
# Check whether the input image size can be devisible by the whole
# downsample rate of the encoder. The whole downsample rate of this
# case is 8.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=4,
strides=(1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2),
dec_num_convs=(2, 2, 2),
downsamples=(True, True, True),
enc_dilations=(1, 1, 1, 1),
dec_dilations=(1, 1, 1))
x = torch.randn(2, 3, 65, 65)
unet(x)
with pytest.raises(AssertionError):
# Check whether the input image size can be devisible by the whole
# downsample rate of the encoder. The whole downsample rate of this
# case is 16.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, True),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 65, 65)
unet(x)
with pytest.raises(AssertionError):
# Check whether the input image size can be devisible by the whole
# downsample rate of the encoder. The whole downsample rate of this
# case is 8.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, False),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 65, 65)
unet(x)
with pytest.raises(AssertionError):
# Check whether the input image size can be devisible by the whole
# downsample rate of the encoder. The whole downsample rate of this
# case is 8.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 2, 2, 2, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, False),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 65, 65)
unet(x)
with pytest.raises(AssertionError):
# Check whether the input image size can be devisible by the whole
# downsample rate of the encoder. The whole downsample rate of this
# case is 32.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=6,
strides=(1, 1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2, 2),
downsamples=(True, True, True, True, True),
enc_dilations=(1, 1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1, 1))
x = torch.randn(2, 3, 65, 65)
unet(x)
with pytest.raises(AssertionError):
# Check if num_stages matchs strides, len(strides)=num_stages
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, True),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 64, 64)
unet(x)
with pytest.raises(AssertionError):
# Check if num_stages matchs strides, len(enc_num_convs)=num_stages
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, True),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 64, 64)
unet(x)
with pytest.raises(AssertionError):
# Check if num_stages matchs strides, len(dec_num_convs)=num_stages-1
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2, 2),
downsamples=(True, True, True, True),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 64, 64)
unet(x)
with pytest.raises(AssertionError):
# Check if num_stages matchs strides, len(downsamples)=num_stages-1
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 64, 64)
unet(x)
with pytest.raises(AssertionError):
# Check if num_stages matchs strides, len(enc_dilations)=num_stages
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, True),
enc_dilations=(1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 64, 64)
unet(x)
with pytest.raises(AssertionError):
# Check if num_stages matchs strides, len(dec_dilations)=num_stages-1
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, True),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1, 1))
x = torch.randn(2, 3, 64, 64)
unet(x)
# test UNet norm_eval=True
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, True),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1),
norm_eval=True)
unet.train()
assert check_norm_state(unet.modules(), False)
# test UNet norm_eval=False
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, True),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1),
norm_eval=False)
unet.train()
assert check_norm_state(unet.modules(), True)
# test UNet forward and outputs. The whole downsample rate is 16.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, True),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 128, 128)
x_outs = unet(x)
assert x_outs[0].shape == torch.Size([2, 1024, 8, 8])
assert x_outs[1].shape == torch.Size([2, 512, 16, 16])
assert x_outs[2].shape == torch.Size([2, 256, 32, 32])
assert x_outs[3].shape == torch.Size([2, 128, 64, 64])
assert x_outs[4].shape == torch.Size([2, 64, 128, 128])
# test UNet forward and outputs. The whole downsample rate is 8.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, False),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 128, 128)
x_outs = unet(x)
assert x_outs[0].shape == torch.Size([2, 1024, 16, 16])
assert x_outs[1].shape == torch.Size([2, 512, 16, 16])
assert x_outs[2].shape == torch.Size([2, 256, 32, 32])
assert x_outs[3].shape == torch.Size([2, 128, 64, 64])
assert x_outs[4].shape == torch.Size([2, 64, 128, 128])
# test UNet forward and outputs. The whole downsample rate is 8.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 2, 2, 2, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, False),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 128, 128)
x_outs = unet(x)
assert x_outs[0].shape == torch.Size([2, 1024, 16, 16])
assert x_outs[1].shape == torch.Size([2, 512, 16, 16])
assert x_outs[2].shape == torch.Size([2, 256, 32, 32])
assert x_outs[3].shape == torch.Size([2, 128, 64, 64])
assert x_outs[4].shape == torch.Size([2, 64, 128, 128])
# test UNet forward and outputs. The whole downsample rate is 4.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, False, False),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 128, 128)
x_outs = unet(x)
assert x_outs[0].shape == torch.Size([2, 1024, 32, 32])
assert x_outs[1].shape == torch.Size([2, 512, 32, 32])
assert x_outs[2].shape == torch.Size([2, 256, 32, 32])
assert x_outs[3].shape == torch.Size([2, 128, 64, 64])
assert x_outs[4].shape == torch.Size([2, 64, 128, 128])
# test UNet forward and outputs. The whole downsample rate is 4.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 2, 2, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, False, False),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 128, 128)
x_outs = unet(x)
assert x_outs[0].shape == torch.Size([2, 1024, 32, 32])
assert x_outs[1].shape == torch.Size([2, 512, 32, 32])
assert x_outs[2].shape == torch.Size([2, 256, 32, 32])
assert x_outs[3].shape == torch.Size([2, 128, 64, 64])
assert x_outs[4].shape == torch.Size([2, 64, 128, 128])
# test UNet forward and outputs. The whole downsample rate is 8.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, False),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 128, 128)
x_outs = unet(x)
assert x_outs[0].shape == torch.Size([2, 1024, 16, 16])
assert x_outs[1].shape == torch.Size([2, 512, 16, 16])
assert x_outs[2].shape == torch.Size([2, 256, 32, 32])
assert x_outs[3].shape == torch.Size([2, 128, 64, 64])
assert x_outs[4].shape == torch.Size([2, 64, 128, 128])
# test UNet forward and outputs. The whole downsample rate is 4.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, False, False),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 128, 128)
x_outs = unet(x)
assert x_outs[0].shape == torch.Size([2, 1024, 32, 32])
assert x_outs[1].shape == torch.Size([2, 512, 32, 32])
assert x_outs[2].shape == torch.Size([2, 256, 32, 32])
assert x_outs[3].shape == torch.Size([2, 128, 64, 64])
assert x_outs[4].shape == torch.Size([2, 64, 128, 128])
# test UNet forward and outputs. The whole downsample rate is 2.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, False, False, False),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 128, 128)
x_outs = unet(x)
assert x_outs[0].shape == torch.Size([2, 1024, 64, 64])
assert x_outs[1].shape == torch.Size([2, 512, 64, 64])
assert x_outs[2].shape == torch.Size([2, 256, 64, 64])
assert x_outs[3].shape == torch.Size([2, 128, 64, 64])
assert x_outs[4].shape == torch.Size([2, 64, 128, 128])
# test UNet forward and outputs. The whole downsample rate is 1.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 1, 1, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(False, False, False, False),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
x = torch.randn(2, 3, 128, 128)
x_outs = unet(x)
assert x_outs[0].shape == torch.Size([2, 1024, 128, 128])
assert x_outs[1].shape == torch.Size([2, 512, 128, 128])
assert x_outs[2].shape == torch.Size([2, 256, 128, 128])
assert x_outs[3].shape == torch.Size([2, 128, 128, 128])
assert x_outs[4].shape == torch.Size([2, 64, 128, 128])
# test UNet forward and outputs. The whole downsample rate is 16.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 2, 2, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, True),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
print(unet)
x = torch.randn(2, 3, 128, 128)
x_outs = unet(x)
assert x_outs[0].shape == torch.Size([2, 1024, 8, 8])
assert x_outs[1].shape == torch.Size([2, 512, 16, 16])
assert x_outs[2].shape == torch.Size([2, 256, 32, 32])
assert x_outs[3].shape == torch.Size([2, 128, 64, 64])
assert x_outs[4].shape == torch.Size([2, 64, 128, 128])
# test UNet forward and outputs. The whole downsample rate is 8.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 2, 2, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, False),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
print(unet)
x = torch.randn(2, 3, 128, 128)
x_outs = unet(x)
assert x_outs[0].shape == torch.Size([2, 1024, 16, 16])
assert x_outs[1].shape == torch.Size([2, 512, 16, 16])
assert x_outs[2].shape == torch.Size([2, 256, 32, 32])
assert x_outs[3].shape == torch.Size([2, 128, 64, 64])
assert x_outs[4].shape == torch.Size([2, 64, 128, 128])
# test UNet forward and outputs. The whole downsample rate is 8.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 2, 2, 2, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, False),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
print(unet)
x = torch.randn(2, 3, 128, 128)
x_outs = unet(x)
assert x_outs[0].shape == torch.Size([2, 1024, 16, 16])
assert x_outs[1].shape == torch.Size([2, 512, 16, 16])
assert x_outs[2].shape == torch.Size([2, 256, 32, 32])
assert x_outs[3].shape == torch.Size([2, 128, 64, 64])
assert x_outs[4].shape == torch.Size([2, 64, 128, 128])
# test UNet forward and outputs. The whole downsample rate is 4.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 2, 2, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, False, False),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
print(unet)
x = torch.randn(2, 3, 128, 128)
x_outs = unet(x)
assert x_outs[0].shape == torch.Size([2, 1024, 32, 32])
assert x_outs[1].shape == torch.Size([2, 512, 32, 32])
assert x_outs[2].shape == torch.Size([2, 256, 32, 32])
assert x_outs[3].shape == torch.Size([2, 128, 64, 64])
assert x_outs[4].shape == torch.Size([2, 64, 128, 128])
# test UNet init_weights method.
unet = UNet(
in_channels=3,
base_channels=64,
num_stages=5,
strides=(1, 2, 2, 1, 1),
enc_num_convs=(2, 2, 2, 2, 2),
dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, False, False),
enc_dilations=(1, 1, 1, 1, 1),
dec_dilations=(1, 1, 1, 1))
unet.init_weights(pretrained=None)
print(unet)
x = torch.randn(2, 3, 128, 128)
x_outs = unet(x)
assert x_outs[0].shape == torch.Size([2, 1024, 32, 32])
assert x_outs[1].shape == torch.Size([2, 512, 32, 32])
assert x_outs[2].shape == torch.Size([2, 256, 32, 32])
assert x_outs[3].shape == torch.Size([2, 128, 64, 64])
assert x_outs[4].shape == torch.Size([2, 64, 128, 128])