[Fix] Update ddrnet readme (#3198)
parent
057155d3ab
commit
5fc197900f
|
@ -24,10 +24,10 @@ Semantic segmentation is a key technology for autonomous vehicles to understand
|
|||
|
||||
### Cityscapes
|
||||
|
||||
| Method | Backbone | Crop Size | Lr schd | Mem(GB) | Inf time(fps) | Device | mIoU | mIoU(ms+flip) | config | download |
|
||||
| ------ | ------------- | --------- | ------- | ------- | ------------- | ------ | ----- | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| DDRNet | DDRNet23-slim | 1024x1024 | 120000 | 1.70 | 85.85 | A100 | 77.84 | 80.15 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ddrnet/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ddrnet/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024_20230426_145312-6a5e5174.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ddrnet/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024_20230426_145312.json) |
|
||||
| DDRNet | DDRNet23 | 1024x1024 | 120000 | 7.26 | 33.41 | A100 | 79.99 | 81.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ddrnet/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ddrnet/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024_20230425_162633-81601db0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ddrnet/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024_20230425_162633.json) |
|
||||
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU | mIoU(ms+flip) | config | download |
|
||||
| ------ | ------------- | --------- | ------- | -------- | -------------- | ------ | ----- | ------------- | ----------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| DDRNet | DDRNet23-slim | 1024x1024 | 120000 | 1.70 | 85.85 | A100 | 77.84 | 80.15 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ddrnet/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ddrnet/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024_20230426_145312-6a5e5174.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ddrnet/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024_20230426_145312.json) |
|
||||
| DDRNet | DDRNet23 | 1024x1024 | 120000 | 7.26 | 33.41 | A100 | 79.99 | 81.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ddrnet/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ddrnet/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024_20230425_162633-81601db0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ddrnet/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024_20230425_162633.json) |
|
||||
|
||||
## Notes
|
||||
|
||||
|
|
|
@ -10,7 +10,7 @@ class_weight = [
|
|||
1.0023, 0.9539, 0.9843, 1.1116, 0.9037, 1.0865, 1.0955, 1.0865, 1.1529,
|
||||
1.0507
|
||||
]
|
||||
|
||||
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/ddrnet/pretrain/ddrnet23s-in1kpre_3rdparty-1ccac5b1.pth' # noqa
|
||||
crop_size = (1024, 1024)
|
||||
data_preprocessor = dict(
|
||||
type='SegDataPreProcessor',
|
||||
|
@ -31,9 +31,7 @@ model = dict(
|
|||
ppm_channels=128,
|
||||
norm_cfg=norm_cfg,
|
||||
align_corners=False,
|
||||
init_cfg=dict(
|
||||
type='Pretrained',
|
||||
checkpoint='pretrained/ddrnet23s_in1k_mmseg.pth')),
|
||||
init_cfg=dict(type='Pretrained', checkpoint=checkpoint)),
|
||||
decode_head=dict(
|
||||
type='DDRHead',
|
||||
in_channels=32 * 4,
|
||||
|
|
|
@ -10,7 +10,7 @@ class_weight = [
|
|||
1.0023, 0.9539, 0.9843, 1.1116, 0.9037, 1.0865, 1.0955, 1.0865, 1.1529,
|
||||
1.0507
|
||||
]
|
||||
|
||||
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/ddrnet/pretrain/ddrnet23-in1kpre_3rdparty-9ca29f62.pth' # noqa
|
||||
crop_size = (1024, 1024)
|
||||
data_preprocessor = dict(
|
||||
type='SegDataPreProcessor',
|
||||
|
@ -31,9 +31,7 @@ model = dict(
|
|||
ppm_channels=128,
|
||||
norm_cfg=norm_cfg,
|
||||
align_corners=False,
|
||||
init_cfg=dict(
|
||||
type='Pretrained',
|
||||
checkpoint='pretrained/ddrnet23_in1k_mmseg.pth')),
|
||||
init_cfg=dict(type='Pretrained', checkpoint=checkpoint)),
|
||||
decode_head=dict(
|
||||
type='DDRHead',
|
||||
in_channels=64 * 4,
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
Collections:
|
||||
- Name: ''
|
||||
- Name: DDRNet
|
||||
License: Apache License 2.0
|
||||
Metadata:
|
||||
Training Data:
|
||||
|
@ -11,4 +11,54 @@ Collections:
|
|||
README: configs/ddrnet/README.md
|
||||
Frameworks:
|
||||
- PyTorch
|
||||
Models: []
|
||||
Models:
|
||||
- Name: ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024
|
||||
In Collection: DDRNet
|
||||
Results:
|
||||
Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
Metrics:
|
||||
mIoU: 77.84
|
||||
mIoU(ms+flip): 80.15
|
||||
Config: configs/ddrnet/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024.py
|
||||
Metadata:
|
||||
Training Data: Cityscapes
|
||||
Batch Size: 12
|
||||
Architecture:
|
||||
- DDRNet23-slim
|
||||
- DDRNet
|
||||
Training Resources: 2x A100 GPUS
|
||||
Memory (GB): 1.7
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ddrnet/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024_20230426_145312-6a5e5174.pth
|
||||
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ddrnet/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024_20230426_145312.json
|
||||
Paper:
|
||||
Title: Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation
|
||||
of Road Scenes
|
||||
URL: http://arxiv.org/abs/2101.06085
|
||||
Code: ''
|
||||
Framework: PyTorch
|
||||
- Name: ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024
|
||||
In Collection: DDRNet
|
||||
Results:
|
||||
Task: Semantic Segmentation
|
||||
Dataset: Cityscapes
|
||||
Metrics:
|
||||
mIoU: 79.99
|
||||
mIoU(ms+flip): 81.71
|
||||
Config: configs/ddrnet/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024.py
|
||||
Metadata:
|
||||
Training Data: Cityscapes
|
||||
Batch Size: 12
|
||||
Architecture:
|
||||
- DDRNet23
|
||||
- DDRNet
|
||||
Training Resources: 2x A100 GPUS
|
||||
Memory (GB): 7.26
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ddrnet/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024_20230425_162633-81601db0.pth
|
||||
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/ddrnet/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024_20230425_162633.json
|
||||
Paper:
|
||||
Title: Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation
|
||||
of Road Scenes
|
||||
URL: http://arxiv.org/abs/2101.06085
|
||||
Code: ''
|
||||
Framework: PyTorch
|
||||
|
|
|
@ -1,9 +1,12 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import subprocess
|
||||
from hashlib import sha256
|
||||
|
||||
import torch
|
||||
|
||||
BLOCK_SIZE = 128 * 1024
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
|
@ -14,6 +17,17 @@ def parse_args():
|
|||
return args
|
||||
|
||||
|
||||
def sha256sum(filename: str) -> str:
|
||||
"""Compute SHA256 message digest from a file."""
|
||||
hash_func = sha256()
|
||||
byte_array = bytearray(BLOCK_SIZE)
|
||||
memory_view = memoryview(byte_array)
|
||||
with open(filename, 'rb', buffering=0) as file:
|
||||
for block in iter(lambda: file.readinto(memory_view), 0):
|
||||
hash_func.update(memory_view[:block])
|
||||
return hash_func.hexdigest()
|
||||
|
||||
|
||||
def process_checkpoint(in_file, out_file):
|
||||
checkpoint = torch.load(in_file, map_location='cpu')
|
||||
# remove optimizer for smaller file size
|
||||
|
@ -22,7 +36,7 @@ def process_checkpoint(in_file, out_file):
|
|||
# if it is necessary to remove some sensitive data in checkpoint['meta'],
|
||||
# add the code here.
|
||||
torch.save(checkpoint, out_file)
|
||||
sha = subprocess.check_output(['sha256sum', out_file]).decode()
|
||||
sha = sha256sum(in_file)
|
||||
final_file = out_file.rstrip('.pth') + f'-{sha[:8]}.pth'
|
||||
subprocess.Popen(['mv', out_file, final_file])
|
||||
|
||||
|
|
Loading…
Reference in New Issue