Merge branch 'limengzhang/refactor_SegDataSample' into 'refactor_dev'

[Refactor] Add SegDataSample

See merge request openmmlab-enterprise/openmmlab-ce/mmsegmentation!9
pull/1801/head
zhengmiao 2022-05-16 11:31:47 +00:00
commit 619bc4a185
4 changed files with 174 additions and 0 deletions

View File

@ -1,5 +1,6 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .builder import build_optimizer, build_optimizer_constructor
from .data_structures import * # noqa: F401, F403
from .evaluation import * # noqa: F401, F403
from .optimizers import * # noqa: F401, F403
from .seg import * # noqa: F401, F403

View File

@ -0,0 +1,4 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .seg_data_sample import SegDataSample
__all__ = ['SegDataSample']

View File

@ -0,0 +1,92 @@
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.data import BaseDataElement, PixelData
class SegDataSample(BaseDataElement):
"""A data structure interface of MMSegmentation. They are used as
interfaces between different components.
The attributes in ``SegDataSample`` are divided into several parts:
- ``gt_sem_seg``(PixelData): Ground truth of semantic segmentation.
- ``pred_sem_seg``(PixelData): Prediction of semantic segmentation.
- ``seg_logits``(PixelData): Predicted logits of semantic segmentation.
Examples:
>>> import torch
>>> import numpy as np
>>> from mmengine.data import PixelData
>>> from mmseg.core import SegDataSample
>>> data_sample = SegDataSample()
>>> img_meta = dict(img_shape=(4, 4, 3),
... pad_shape=(4, 4, 3))
>>> gt_segmentations = PixelData(metainfo=img_meta)
>>> gt_segmentations.gt_sem_seg = torch.randint(0, 2, (1, 4, 4))
>>> data_sample.gt_segmentations = gt_segmentations
>>> assert 'img_shape' in data_sample.gt_segmentations.metainfo_keys()
>>> data_sample.gt_segmentations
(4, 4)
>>> print(data_sample)
<SegDataSample(
META INFORMATION
DATA FIELDS
gt_segmentations: <PixelData(
META INFORMATION
img_shape: (4, 4, 3)
pad_shape: (4, 4, 3)
DATA FIELDS
gt_sem_seg: tensor([[[1, 1, 1, 0],
[1, 0, 1, 1],
[1, 1, 1, 1],
[0, 1, 0, 1]]])
) at 0x1c2b4156460>
) at 0x1c2aae44d60>
>>> data_sample = SegDataSample()
>>> gt_sem_seg_data = dict(sem_seg=torch.rand(1, 4, 4))
>>> gt_sem_seg = PixelData(**gt_sem_seg_data)
>>> data_sample.gt_sem_seg = gt_sem_seg
>>> assert 'gt_sem_seg' in data_sample
>>> assert 'sem_seg' in data_sample.gt_sem_seg
"""
@property
def gt_sem_seg(self) -> PixelData:
return self._gt_sem_seg
@gt_sem_seg.setter
def gt_sem_seg(self, value: PixelData) -> None:
self.set_field(value, '_gt_sem_seg', dtype=PixelData)
@gt_sem_seg.deleter
def gt_sem_seg(self) -> None:
del self._gt_sem_seg
@property
def pred_sem_seg(self) -> PixelData:
return self._pred_sem_seg
@pred_sem_seg.setter
def pred_sem_seg(self, value: PixelData) -> None:
self.set_field(value, '_pred_sem_seg', dtype=PixelData)
@pred_sem_seg.deleter
def pred_sem_seg(self) -> None:
del self._pred_sem_seg
@property
def seg_logits(self) -> PixelData:
return self._seg_logits
@seg_logits.setter
def seg_logits(self, value: PixelData) -> None:
self.set_field(value, '_seg_logits', dtype=PixelData)
@seg_logits.deleter
def seg_logits(self) -> None:
del self._seg_logits

View File

@ -0,0 +1,77 @@
# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import numpy as np
import pytest
import torch
from mmengine.data import PixelData
from mmseg.core import SegDataSample
def _equal(a, b):
if isinstance(a, (torch.Tensor, np.ndarray)):
return (a == b).all()
else:
return a == b
class TestSegDataSample(TestCase):
def test_init(self):
meta_info = dict(
img_size=[256, 256],
scale_factor=np.array([1.5, 1.5]),
img_shape=torch.rand(4))
seg_data_sample = SegDataSample(metainfo=meta_info)
assert 'img_size' in seg_data_sample
assert seg_data_sample.img_size == [256, 256]
assert seg_data_sample.get('img_size') == [256, 256]
def test_setter(self):
seg_data_sample = SegDataSample()
# test gt_sem_seg
gt_sem_seg_data = dict(sem_seg=torch.rand(5, 4, 2))
gt_sem_seg = PixelData(**gt_sem_seg_data)
seg_data_sample.gt_sem_seg = gt_sem_seg
assert 'gt_sem_seg' in seg_data_sample
assert _equal(seg_data_sample.gt_sem_seg.sem_seg,
gt_sem_seg_data['sem_seg'])
# test pred_sem_seg
pred_sem_seg_data = dict(sem_seg=torch.rand(5, 4, 2))
pred_sem_seg = PixelData(**pred_sem_seg_data)
seg_data_sample.pred_sem_seg = pred_sem_seg
assert 'pred_sem_seg' in seg_data_sample
assert _equal(seg_data_sample.pred_sem_seg.sem_seg,
pred_sem_seg_data['sem_seg'])
# test seg_logits
seg_logits_data = dict(sem_seg=torch.rand(5, 4, 2))
seg_logits = PixelData(**seg_logits_data)
seg_data_sample.seg_logits = seg_logits
assert 'seg_logits' in seg_data_sample
assert _equal(seg_data_sample.seg_logits.sem_seg,
seg_logits_data['sem_seg'])
# test type error
with pytest.raises(AssertionError):
seg_data_sample.gt_sem_seg = torch.rand(2, 4)
with pytest.raises(AssertionError):
seg_data_sample.pred_sem_seg = torch.rand(2, 4)
with pytest.raises(AssertionError):
seg_data_sample.seg_logits = torch.rand(2, 4)
def test_deleter(self):
seg_data_sample = SegDataSample()
pred_sem_seg_data = dict(sem_seg=torch.rand(5, 4, 2))
pred_sem_seg = PixelData(**pred_sem_seg_data)
seg_data_sample.pred_sem_seg = pred_sem_seg
assert 'pred_sem_seg' in seg_data_sample
del seg_data_sample.pred_sem_seg
assert 'pred_sem_seg' not in seg_data_sample