init commit: fast_scnn

pull/58/head
johnzja 2020-07-31 14:16:00 +08:00
parent 2b801dedfc
commit 6435e3e162
9 changed files with 645 additions and 71 deletions

4
.gitignore vendored
View File

@ -113,6 +113,10 @@ data
*.pkl.json
*.log.json
work_dirs/
workdirs/
configs_unify/
# Pytorch
*.pth

View File

@ -0,0 +1,55 @@
# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
model = dict(
type='EncoderDecoder',
backbone=dict(
type='FastSCNN',
downsample_dw_channels1=32,
downsample_dw_channels2=48,
global_in_channels=64,
global_block_channels=(64, 96, 128),
global_out_channels=128,
higher_in_channels=64,
lower_in_channels=128,
fusion_out_channels=128,
scale_factor=4,
out_indices=(0, 1, 2),
norm_cfg=norm_cfg,
align_corners=False),
decode_head=dict(
type='SepFCNHead',
in_channels=128,
channels=128,
concat_input=False,
num_classes=19,
in_index=-1,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.)),
auxiliary_head=[
dict(
type='FCNHead',
in_channels=128,
channels=32,
num_convs=1,
num_classes=19,
in_index=-2,
norm_cfg=norm_cfg,
concat_input=False,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
dict(
type='FCNHead',
in_channels=64,
channels=32,
num_convs=1,
num_classes=19,
in_index=-3,
norm_cfg=norm_cfg,
concat_input=False,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
])

View File

@ -0,0 +1,61 @@
_base_ = [
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py'
]
crop_size = (512, 1024)
cudnn_benchmark = True
# model training and testing settings
train_cfg = dict()
test_cfg = dict(mode='whole')
# Here: What is parameter 'with_seg'?
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations'), # with_seg=True
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='RandomCrop', crop_size=crop_size),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 1024),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=3,
workers_per_gpu=3,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.045, momentum=0.9, weight_decay=4e-5)
optimizer_config = dict()
# learning policy
lr_config = dict(
policy='poly',
power=0.9,
by_epoch=False,
)
# runtime settings
# total_epochs = 1000
total_iters = 10000
evaluation = dict(interval=100, metric='mIoU')
checkpoint_config = dict(interval=100)

View File

@ -1,5 +1,6 @@
from .hrnet import HRNet
from .resnet import ResNet, ResNetV1c, ResNetV1d
from .resnext import ResNeXt
from .fast_scnn import FastSCNN
__all__ = ['ResNet', 'ResNetV1c', 'ResNetV1d', 'ResNeXt', 'HRNet']
__all__ = ['ResNet', 'ResNetV1c', 'ResNetV1d', 'ResNeXt', 'HRNet', 'FastSCNN']

View File

@ -0,0 +1,248 @@
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, constant_init, kaiming_init
from torch.nn.modules.batchnorm import _BatchNorm
from mmseg.models.backbones.mobile_net_v2 import InvertedResidual
from mmseg.models.decode_heads.psp_head import PPM
from mmseg.ops import DepthwiseSeparableConvModule, resize
from ..builder import BACKBONES
class LearningToDownsample(nn.Module):
"""Learning to downsample module"""
def __init__(self,
in_channels,
dw_channels1,
dw_channels2,
out_channels,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU')):
super(LearningToDownsample, self).__init__()
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.conv = ConvModule(
in_channels,
dw_channels1,
3,
stride=2,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.dsconv1 = DepthwiseSeparableConvModule(
dw_channels1,
dw_channels2,
stride=2,
relu_first=False,
norm_cfg=self.norm_cfg)
self.dsconv2 = DepthwiseSeparableConvModule(
dw_channels2,
out_channels,
stride=2,
relu_first=False,
norm_cfg=self.norm_cfg)
def forward(self, x):
x = self.conv(x)
x = self.dsconv1(x)
x = self.dsconv2(x)
return x
class GlobalFeatureExtractor(nn.Module):
"""Global feature extractor module"""
def __init__(self,
in_channels=64,
block_channels=(64, 96, 128),
out_channels=128,
t=6,
num_blocks=(3, 3, 3),
pool_scales=(1, 2, 3, 6),
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
align_corners=True):
super(GlobalFeatureExtractor, self).__init__()
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
assert len(block_channels) == len(num_blocks) == 3
self.bottleneck1 = self._make_layer(in_channels, block_channels[0],
num_blocks[0], t, 2)
self.bottleneck2 = self._make_layer(block_channels[0],
block_channels[1], num_blocks[1],
t, 2)
self.bottleneck3 = self._make_layer(block_channels[1],
block_channels[2], num_blocks[2],
t, 1)
self.ppm = PPM(
pool_scales,
block_channels[2],
block_channels[2] // 4,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
align_corners=align_corners)
self.out = ConvModule(
block_channels[2] * 2,
out_channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def _make_layer(self, inplanes, planes, blocks, t=6, stride=1):
layers = []
layers.append(
InvertedResidual(
inplanes, planes, stride, t, norm_cfg=self.norm_cfg))
for i in range(1, blocks):
layers.append(
InvertedResidual(planes, planes, 1, t, norm_cfg=self.norm_cfg))
return nn.Sequential(*layers)
def forward(self, x):
x = self.bottleneck1(x)
x = self.bottleneck2(x)
x = self.bottleneck3(x)
x = torch.cat([x, *self.ppm(x)], dim=1)
x = self.out(x)
return x
class FeatureFusionModule(nn.Module):
"""Feature fusion module"""
def __init__(self,
higher_in_channels,
lower_in_channels,
out_channels,
scale_factor,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
align_corners=True):
super(FeatureFusionModule, self).__init__()
self.scale_factor = scale_factor
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.align_corners = align_corners
self.dwconv = ConvModule(
lower_in_channels,
out_channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.conv_lower_res = ConvModule(
out_channels,
out_channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=None)
self.conv_higher_res = ConvModule(
higher_in_channels,
out_channels,
1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=None)
self.relu = nn.ReLU(True)
def forward(self, higher_res_feature, lower_res_feature):
lower_res_feature = resize(
lower_res_feature,
scale_factor=self.scale_factor,
mode='bilinear',
align_corners=self.align_corners)
lower_res_feature = self.dwconv(lower_res_feature)
lower_res_feature = self.conv_lower_res(lower_res_feature)
higher_res_feature = self.conv_higher_res(higher_res_feature)
out = higher_res_feature + lower_res_feature
return self.relu(out)
@BACKBONES.register_module()
class FastSCNN(nn.Module):
def __init__(self,
in_channels=3,
downsample_dw_channels1=32,
downsample_dw_channels2=48,
global_in_channels=64,
global_block_channels=(64, 96, 128),
global_out_channels=128,
higher_in_channels=64,
lower_in_channels=128,
fusion_out_channels=128,
scale_factor=4,
out_indices=(0, 1, 2),
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
align_corners=False):
super(FastSCNN, self).__init__()
self.in_channels = in_channels
self.downsample_dw_channels1 = downsample_dw_channels1
self.downsample_dw_channels2 = downsample_dw_channels2
self.global_in_channels = global_in_channels
self.global_block_channels = global_block_channels
self.global_out_channels = global_out_channels
self.higher_in_channels = higher_in_channels
self.lower_in_channels = lower_in_channels
self.fusion_out_channels = fusion_out_channels
self.scale_factor = scale_factor
self.out_indices = out_indices
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.align_corners = align_corners
self.learning_to_downsample = LearningToDownsample(
in_channels,
downsample_dw_channels1,
downsample_dw_channels2,
global_in_channels,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
self.global_feature_extractor = GlobalFeatureExtractor(
global_in_channels,
global_block_channels,
global_out_channels,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
align_corners=self.align_corners)
self.feature_fusion = FeatureFusionModule(
higher_in_channels,
lower_in_channels,
fusion_out_channels,
scale_factor=self.scale_factor,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
align_corners=self.align_corners)
def init_weights(self, pretrained=None):
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m, 1)
def forward(self, x):
higher_res_features = self.learning_to_downsample(x)
lower_res_features = self.global_feature_extractor(higher_res_features)
fusion_output = self.feature_fusion(higher_res_features,
lower_res_features)
outs = [higher_res_features, lower_res_features, fusion_output]
outs = [outs[i] for i in self.out_indices]
return tuple(outs)

View File

@ -0,0 +1,203 @@
from mmcv.cnn import (ConvModule, build_norm_layer, constant_init,
kaiming_init, normal_init)
from mmcv.runner import load_checkpoint
from torch import nn
from torch.nn.modules.batchnorm import _BatchNorm
from mmseg.utils import get_root_logger
from ..builder import BACKBONES
class InvertedResidual(nn.Module):
def __init__(self,
inp,
oup,
stride,
expand_ratio,
dilation=1,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU6')):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(
ConvModule(
inp,
hidden_dim,
kernel_size=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
layers.extend([
# dw
ConvModule(
hidden_dim,
hidden_dim,
kernel_size=3,
padding=dilation,
stride=stride,
dilation=dilation,
groups=hidden_dim,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
build_norm_layer(norm_cfg, oup)[1],
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
@BACKBONES.register_module()
class MobileNetV2(nn.Module):
arch_settings = (
InvertedResidual,
[
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1]
])
def __init__(self,
in_channels=3,
dilations=(1, 1, 1, 1, 1),
out_indices=(0, 1, 2, 3),
input_channels=32,
width_mult=1.0,
round_nearest=8,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU6')):
"""
MobileNet V2 main class
Args:
width_mult (float): Width multiplier - adjusts number of channels
in each layer by this amount
round_nearest (int): Round the number of channels in each layer to
be a multiple of this number
Set to 1 to turn off rounding
block: Module specifying inverted residual building block for
mobilenet
"""
super(MobileNetV2, self).__init__()
self.in_channels = in_channels
self.width_mult = width_mult
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
block, inverted_residual_setting = self.arch_settings
self.dilations = dilations
self.out_indices = out_indices
# building first layer
input_channels = int(
input_channels *
self.width_mult) if self.width_mult > 1.0 else input_channels
# last_channels = int(1280 * multiplier) if multiplier > 1.0 else 1280
self.conv1 = ConvModule(
3,
input_channels,
kernel_size=3,
stride=2,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
# building inverted residual blocks
self.planes = input_channels
self.block1 = self._make_layer(block, self.planes,
inverted_residual_setting[0:1],
dilations[0])
self.block2 = self._make_layer(block, self.planes,
inverted_residual_setting[1:2],
dilations[1])
self.block3 = self._make_layer(block, self.planes,
inverted_residual_setting[2:3],
dilations[2])
self.block4 = self._make_layer(block, self.planes,
inverted_residual_setting[3:5],
dilations[3])
self.block5 = self._make_layer(block, self.planes,
inverted_residual_setting[5:],
dilations[4])
def _make_layer(self,
block,
planes,
inverted_residual_setting,
dilation=1):
features = list()
for t, c, n, s in inverted_residual_setting:
out_channels = int(c * self.width_mult)
stride = s if dilation == 1 else 1
features.append(
block(
planes,
out_channels,
stride,
t,
dilation,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
planes = out_channels
for i in range(n - 1):
features.append(
block(
planes,
out_channels,
1,
t,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
planes = out_channels
self.planes = planes
return nn.Sequential(*features)
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
else:
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m, mode='fan_out')
elif isinstance(m, _BatchNorm):
constant_init(m, 1)
elif isinstance(m, nn.Linear):
normal_init(m, 0, 0.01)
def forward(self, x):
x = self.conv1(x)
x = self.block1(x)
c1 = self.block2(x)
c2 = self.block3(c1)
c3 = self.block4(c2)
c4 = self.block5(c3)
outs = [c1, c2, c3, c4]
outs = [outs[i] for i in self.out_indices]
return tuple(outs)

View File

@ -11,9 +11,10 @@ from .psa_head import PSAHead
from .psp_head import PSPHead
from .sep_aspp_head import DepthwiseSeparableASPPHead
from .uper_head import UPerHead
from .sep_fcn_head import SepFCNHead
__all__ = [
'FCNHead', 'PSPHead', 'ASPPHead', 'PSAHead', 'NLHead', 'GCHead', 'CCHead',
'UPerHead', 'DepthwiseSeparableASPPHead', 'ANNHead', 'DAHead', 'OCRHead',
'EncHead'
'EncHead', 'SepFCNHead'
]

View File

@ -0,0 +1,29 @@
from mmseg.ops import DepthwiseSeparableConvModule
from ..builder import HEADS
from .fcn_head import FCNHead
@HEADS.register_module()
class SepFCNHead(FCNHead):
def __init__(self, **kwargs):
super(SepFCNHead, self).__init__(**kwargs)
self.convs[0] = DepthwiseSeparableConvModule(
self.in_channels,
self.channels,
norm_cfg=self.norm_cfg,
relu_first=False)
for i in range(1, self.num_convs):
self.convs[i] = DepthwiseSeparableConvModule(
self.channels,
self.channels,
norm_cfg=self.norm_cfg,
relu_first=False)
if self.concat_input:
self.conv_cat = DepthwiseSeparableConvModule(
self.in_channels + self.channels,
self.channels,
self.channels,
norm_cfg=self.norm_cfg,
relu_first=False)

View File

@ -1,88 +1,60 @@
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.cnn import build_norm_layer
from torch import nn
class DepthwiseSeparableConvModule(nn.Module):
"""Depthwise separable convolution module.
See https://arxiv.org/pdf/1704.04861.pdf for details.
This module can replace a ConvModule with the conv block replaced by two
conv block: depthwise conv block and pointwise conv block. The depthwise
conv block contains depthwise-conv/norm/activation layers. The pointwise
conv block contains pointwise-conv/norm/activation layers. It should be
noted that there will be norm/activation layer in the depthwise conv block
if `norm_cfg` and `act_cfg` are specified.
Args:
in_channels (int): Same as nn.Conv2d.
out_channels (int): Same as nn.Conv2d.
kernel_size (int or tuple[int]): Same as nn.Conv2d.
stride (int or tuple[int]): Same as nn.Conv2d. Default: 1.
padding (int or tuple[int]): Same as nn.Conv2d. Default: 0.
dilation (int or tuple[int]): Same as nn.Conv2d. Default: 1.
norm_cfg (dict): Default norm config for both depthwise ConvModule and
pointwise ConvModule. Default: None.
act_cfg (dict): Default activation config for both depthwise ConvModule
and pointwise ConvModule. Default: dict(type='ReLU').
dw_norm_cfg (dict): Norm config of depthwise ConvModule. If it is
'default', it will be the same as `norm_cfg`. Default: 'default'.
dw_act_cfg (dict): Activation config of depthwise ConvModule. If it is
'default', it will be the same as `act_cfg`. Default: 'default'.
pw_norm_cfg (dict): Norm config of pointwise ConvModule. If it is
'default', it will be the same as `norm_cfg`. Default: 'default'.
pw_act_cfg (dict): Activation config of pointwise ConvModule. If it is
'default', it will be the same as `act_cfg`. Default: 'default'.
kwargs (optional): Other shared arguments for depthwise and pointwise
ConvModule. See ConvModule for ref.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
kernel_size=3,
stride=1,
padding=0,
dilation=1,
norm_cfg=None,
act_cfg=dict(type='ReLU'),
dw_norm_cfg='default',
dw_act_cfg='default',
pw_norm_cfg='default',
pw_act_cfg='default',
**kwargs):
relu_first=True,
bias=False,
norm_cfg=dict(type='BN')):
super(DepthwiseSeparableConvModule, self).__init__()
assert 'groups' not in kwargs, 'groups should not be specified'
# if norm/activation config of depthwise/pointwise ConvModule is not
# specified, use default config.
dw_norm_cfg = dw_norm_cfg if dw_norm_cfg != 'default' else norm_cfg
dw_act_cfg = dw_act_cfg if dw_act_cfg != 'default' else act_cfg
pw_norm_cfg = pw_norm_cfg if pw_norm_cfg != 'default' else norm_cfg
pw_act_cfg = pw_act_cfg if pw_act_cfg != 'default' else act_cfg
# depthwise convolution
self.depthwise_conv = ConvModule(
self.depthwise = nn.Conv2d(
in_channels,
in_channels,
kernel_size,
stride=stride,
padding=padding,
padding=dilation,
dilation=dilation,
groups=in_channels,
norm_cfg=dw_norm_cfg,
act_cfg=dw_act_cfg,
**kwargs)
bias=bias)
self.norm_depth_name, norm_depth = build_norm_layer(
norm_cfg, in_channels, postfix='_depth')
self.add_module(self.norm_depth_name, norm_depth)
self.pointwise_conv = ConvModule(
in_channels,
out_channels,
1,
norm_cfg=pw_norm_cfg,
act_cfg=pw_act_cfg,
**kwargs)
self.pointwise = nn.Conv2d(in_channels, out_channels, 1, bias=bias)
self.norm_point_name, norm_point = build_norm_layer(
norm_cfg, out_channels, postfix='_point')
self.add_module(self.norm_point_name, norm_point)
self.relu_first = relu_first
self.relu = nn.ReLU(inplace=not relu_first)
@property
def norm_depth(self):
return getattr(self, self.norm_depth_name)
@property
def norm_point(self):
return getattr(self, self.norm_point_name)
def forward(self, x):
x = self.depthwise_conv(x)
x = self.pointwise_conv(x)
return x
if self.relu_first:
out = self.relu(x)
out = self.depthwise(out)
out = self.norm_depth(out)
out = self.pointwise(out)
out = self.norm_point(out)
else:
out = self.depthwise(x)
out = self.norm_depth(out)
out = self.relu(out)
out = self.pointwise(out)
out = self.norm_point(out)
out = self.relu(out)
return out