mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Project] Medical semantic seg dataset: chest_image_pneum (#2727)
This commit is contained in:
parent
041f1f0f4f
commit
65c8d77d62
147
projects/medical/2d_image/x_ray/chest_image_pneum/README.md
Normal file
147
projects/medical/2d_image/x_ray/chest_image_pneum/README.md
Normal file
@ -0,0 +1,147 @@
|
||||
# Chest Image Dataset for Pneumothorax Segmentation
|
||||
|
||||
## Description
|
||||
|
||||
This project supports **`Chest Image Dataset for Pneumothorax Segmentation`**, which can be downloaded from [here](https://tianchi.aliyun.com/dataset/83075).
|
||||
|
||||
### Dataset Overview
|
||||
|
||||
Pneumothorax can be caused by a blunt chest injury, damage from underlying lung disease, or most horrifying—it may occur for no obvious reason at all. On some occasions, a collapsed lung can be a life-threatening event.
|
||||
Pneumothorax is usually diagnosed by a radiologist on a chest x-ray, and can sometimes be very difficult to confirm. An accurate AI algorithm to detect pneumothorax would be useful in a lot of clinical scenarios. AI could be used to triage chest radiographs for priority interpretation, or to provide a more confident diagnosis for non-radiologists.
|
||||
|
||||
The dataset is provided by the Society for Imaging Informatics in Medicine(SIIM), American College of Radiology (ACR),Society of Thoracic Radiology (STR) and MD.ai. You can develop a model to classify (and if present, segment) pneumothorax from a set of chest radiographic images. If successful, you could aid in the early recognition of pneumothoraces and save lives.
|
||||
|
||||
### Original Statistic Information
|
||||
|
||||
| Dataset name | Anatomical region | Task type | Modality | Num. Classes | Train/Val/Test Images | Train/Val/Test Labeled | Release Date | License |
|
||||
| --------------------------------------------------------------------- | ----------------- | ------------ | -------- | ------------ | --------------------- | ---------------------- | ------------ | ------------------------------------------------------------------ |
|
||||
| [pneumothorax segmentation](https://tianchi.aliyun.com/dataset/83075) | thorax | segmentation | x_ray | 2 | 12089/-/3205 | yes/-/no | - | [CC-BY-SA-NC 4.0](https://creativecommons.org/licenses/by-sa/4.0/) |
|
||||
|
||||
| Class Name | Num. Train | Pct. Train | Num. Val | Pct. Val | Num. Test | Pct. Test |
|
||||
| :---------------: | :--------: | :--------: | :------: | :------: | :-------: | :-------: |
|
||||
| normal | 12089 | 99.75 | - | - | - | - |
|
||||
| pneumothorax area | 2669 | 0.25 | - | - | - | - |
|
||||
|
||||
Note:
|
||||
|
||||
- `Pct` means percentage of pixels in this category in all pixels.
|
||||
|
||||
### Visualization
|
||||
|
||||

|
||||
|
||||
### Prerequisites
|
||||
|
||||
- Python v3.8
|
||||
- PyTorch v1.10.0
|
||||
- [MIM](https://github.com/open-mmlab/mim) v0.3.4
|
||||
- [MMCV](https://github.com/open-mmlab/mmcv) v2.0.0rc4
|
||||
- [MMEngine](https://github.com/open-mmlab/mmengine) v0.2.0 or higher
|
||||
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation) v1.0.0rc5
|
||||
|
||||
All the commands below rely on the correct configuration of `PYTHONPATH`, which should point to the project's directory so that Python can locate the module files. In `chest_image_pneum/` root directory, run the following line to add the current directory to `PYTHONPATH`:
|
||||
|
||||
```shell
|
||||
export PYTHONPATH=`pwd`:$PYTHONPATH
|
||||
```
|
||||
|
||||
### Dataset preparing
|
||||
|
||||
- download dataset from [here](https://tianchi.aliyun.com/dataset/83075) and decompress data to path `'data/'`.
|
||||
- run script `"python tools/prepare_dataset.py"` to format data and change folder structure as below.
|
||||
- run script `"python ../../tools/split_seg_dataset.py"` to split dataset and generate `train.txt`, `val.txt` and `test.txt`. If the label of official validation set and test set can't be obtained, we generate `train.txt` and `val.txt` from the training set randomly.
|
||||
|
||||
```none
|
||||
mmsegmentation
|
||||
├── mmseg
|
||||
├── projects
|
||||
│ ├── medical
|
||||
│ │ ├── 2d_image
|
||||
│ │ │ ├── x_ray
|
||||
│ │ │ │ ├── chest_image_pneum
|
||||
│ │ │ │ │ ├── configs
|
||||
│ │ │ │ │ ├── datasets
|
||||
│ │ │ │ │ ├── tools
|
||||
│ │ │ │ │ ├── data
|
||||
│ │ │ │ │ │ ├── train.txt
|
||||
│ │ │ │ │ │ ├── test.txt
|
||||
│ │ │ │ │ │ ├── images
|
||||
│ │ │ │ │ │ │ ├── train
|
||||
│ │ │ │ | │ │ │ ├── xxx.png
|
||||
│ │ │ │ | │ │ │ ├── ...
|
||||
│ │ │ │ | │ │ │ └── xxx.png
|
||||
│ │ │ │ │ │ ├── masks
|
||||
│ │ │ │ │ │ │ ├── train
|
||||
│ │ │ │ | │ │ │ ├── xxx.png
|
||||
│ │ │ │ | │ │ │ ├── ...
|
||||
│ │ │ │ | │ │ │ └── xxx.png
|
||||
```
|
||||
|
||||
### Divided Dataset Information
|
||||
|
||||
***Note: The table information below is divided by ourselves.***
|
||||
|
||||
| Class Name | Num. Train | Pct. Train | Num. Val | Pct. Val | Num. Test | Pct. Test |
|
||||
| :---------------: | :--------: | :--------: | :------: | :------: | :-------: | :-------: |
|
||||
| normal | 9637 | 99.75 | 2410 | 99.74 | - | - |
|
||||
| pneumothorax area | 2137 | 0.25 | 532 | 0.26 | - | - |
|
||||
|
||||
### Training commands
|
||||
|
||||
Train models on a single server with one GPU.
|
||||
|
||||
```shell
|
||||
mim train mmseg ./configs/${CONFIG_FILE}
|
||||
```
|
||||
|
||||
### Testing commands
|
||||
|
||||
Test models on a single server with one GPU.
|
||||
|
||||
```shell
|
||||
mim test mmseg ./configs/${CONFIG_FILE} --checkpoint ${CHECKPOINT_PATH}
|
||||
```
|
||||
|
||||
<!-- List the results as usually done in other model's README. [Example](https://github.com/open-mmlab/mmsegmentation/tree/dev-1.x/configs/fcn#results-and-models)
|
||||
|
||||
You should claim whether this is based on the pre-trained weights, which are converted from the official release; or it's a reproduced result obtained from retraining the model in this project. -->
|
||||
|
||||
## Results
|
||||
|
||||
### Bactteria detection with darkfield microscopy
|
||||
|
||||
| Method | Backbone | Crop Size | lr | mIoU | mDice | config | download |
|
||||
| :-------------: | :------: | :-------: | :----: | :--: | :---: | :------------------------------------------------------------------------------------: | :----------------------: |
|
||||
| fcn_unet_s5-d16 | unet | 512x512 | 0.01 | - | - | [config](./configs/fcn-unet-s5-d16_unet_1xb16-0.01-20k_chest-image-pneum-512x512.py) | [model](<>) \| [log](<>) |
|
||||
| fcn_unet_s5-d16 | unet | 512x512 | 0.001 | - | - | [config](./configs/fcn-unet-s5-d16_unet_1xb16-0.001-20k_chest-image-pneum-512x512.py) | [model](<>) \| [log](<>) |
|
||||
| fcn_unet_s5-d16 | unet | 512x512 | 0.0001 | - | - | [config](./configs/fcn-unet-s5-d16_unet_1xb16-0.0001-20k_chest-image-pneum-512x512.py) | [model](<>) \| [log](<>) |
|
||||
|
||||
## Checklist
|
||||
|
||||
- [x] Milestone 1: PR-ready, and acceptable to be one of the `projects/`.
|
||||
|
||||
- [x] Finish the code
|
||||
|
||||
- [x] Basic docstrings & proper citation
|
||||
|
||||
- [x] Test-time correctness
|
||||
|
||||
- [x] A full README
|
||||
|
||||
- [x] Milestone 2: Indicates a successful model implementation.
|
||||
|
||||
- [x] Training-time correctness
|
||||
|
||||
- [ ] Milestone 3: Good to be a part of our core package!
|
||||
|
||||
- [ ] Type hints and docstrings
|
||||
|
||||
- [ ] Unit tests
|
||||
|
||||
- [ ] Code polishing
|
||||
|
||||
- [ ] Metafile.yml
|
||||
|
||||
- [ ] Move your modules into the core package following the codebase's file hierarchy structure.
|
||||
|
||||
- [ ] Refactor your modules into the core package following the codebase's file hierarchy structure.
|
@ -0,0 +1,42 @@
|
||||
dataset_type = 'ChestImagePneumDataset'
|
||||
data_root = 'data/'
|
||||
img_scale = (512, 512)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations'),
|
||||
dict(type='Resize', scale=img_scale, keep_ratio=False),
|
||||
dict(type='RandomFlip', prob=0.5),
|
||||
dict(type='PhotoMetricDistortion'),
|
||||
dict(type='PackSegInputs')
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='Resize', scale=img_scale, keep_ratio=False),
|
||||
dict(type='LoadAnnotations'),
|
||||
dict(type='PackSegInputs')
|
||||
]
|
||||
train_dataloader = dict(
|
||||
batch_size=16,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='InfiniteSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='train.txt',
|
||||
data_prefix=dict(img_path='images/', seg_map_path='masks/'),
|
||||
pipeline=train_pipeline))
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='val.txt',
|
||||
data_prefix=dict(img_path='images/', seg_map_path='masks/'),
|
||||
pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU', 'mDice'])
|
||||
test_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU', 'mDice'])
|
@ -0,0 +1,18 @@
|
||||
_base_ = [
|
||||
'./chest-image-pneum_512x512.py',
|
||||
'mmseg::_base_/models/fcn_unet_s5-d16.py',
|
||||
'mmseg::_base_/default_runtime.py',
|
||||
'mmseg::_base_/schedules/schedule_20k.py'
|
||||
]
|
||||
custom_imports = dict(imports='datasets.chest-image-pneum_dataset')
|
||||
img_scale = (512, 512)
|
||||
data_preprocessor = dict(size=img_scale)
|
||||
optimizer = dict(lr=0.0001)
|
||||
optim_wrapper = dict(optimizer=optimizer)
|
||||
model = dict(
|
||||
data_preprocessor=data_preprocessor,
|
||||
decode_head=dict(num_classes=2),
|
||||
auxiliary_head=None,
|
||||
test_cfg=dict(mode='whole', _delete_=True))
|
||||
vis_backends = None
|
||||
visualizer = dict(vis_backends=vis_backends)
|
@ -0,0 +1,18 @@
|
||||
_base_ = [
|
||||
'./chest-image-pneum_512x512.py',
|
||||
'mmseg::_base_/models/fcn_unet_s5-d16.py',
|
||||
'mmseg::_base_/default_runtime.py',
|
||||
'mmseg::_base_/schedules/schedule_20k.py'
|
||||
]
|
||||
custom_imports = dict(imports='datasets.chest-image-pneum_dataset')
|
||||
img_scale = (512, 512)
|
||||
data_preprocessor = dict(size=img_scale)
|
||||
optimizer = dict(lr=0.001)
|
||||
optim_wrapper = dict(optimizer=optimizer)
|
||||
model = dict(
|
||||
data_preprocessor=data_preprocessor,
|
||||
decode_head=dict(num_classes=2),
|
||||
auxiliary_head=None,
|
||||
test_cfg=dict(mode='whole', _delete_=True))
|
||||
vis_backends = None
|
||||
visualizer = dict(vis_backends=vis_backends)
|
@ -0,0 +1,18 @@
|
||||
_base_ = [
|
||||
'./chest-image-pneum_512x512.py',
|
||||
'mmseg::_base_/models/fcn_unet_s5-d16.py',
|
||||
'mmseg::_base_/default_runtime.py',
|
||||
'mmseg::_base_/schedules/schedule_20k.py'
|
||||
]
|
||||
custom_imports = dict(imports='datasets.chest-image-pneum_dataset')
|
||||
img_scale = (512, 512)
|
||||
data_preprocessor = dict(size=img_scale)
|
||||
optimizer = dict(lr=0.01)
|
||||
optim_wrapper = dict(optimizer=optimizer)
|
||||
model = dict(
|
||||
data_preprocessor=data_preprocessor,
|
||||
decode_head=dict(num_classes=2),
|
||||
auxiliary_head=None,
|
||||
test_cfg=dict(mode='whole', _delete_=True))
|
||||
vis_backends = None
|
||||
visualizer = dict(vis_backends=vis_backends)
|
@ -0,0 +1,27 @@
|
||||
from mmseg.datasets import BaseSegDataset
|
||||
from mmseg.registry import DATASETS
|
||||
|
||||
|
||||
@DATASETS.register_module()
|
||||
class ChestImagePneumDataset(BaseSegDataset):
|
||||
"""ChestImagePneumDataset dataset.
|
||||
|
||||
In segmentation map annotation for ChestImagePneumDataset,
|
||||
``reduce_zero_label`` is fixed to False. The ``img_suffix``
|
||||
is fixed to '.png' and ``seg_map_suffix`` is fixed to '.png'.
|
||||
|
||||
Args:
|
||||
img_suffix (str): Suffix of images. Default: '.png'
|
||||
seg_map_suffix (str): Suffix of segmentation maps. Default: '.png'
|
||||
"""
|
||||
METAINFO = dict(classes=('normal', 'pneumothorax area'))
|
||||
|
||||
def __init__(self,
|
||||
img_suffix='.png',
|
||||
seg_map_suffix='.png',
|
||||
**kwargs) -> None:
|
||||
super().__init__(
|
||||
img_suffix=img_suffix,
|
||||
seg_map_suffix=seg_map_suffix,
|
||||
reduce_zero_label=False,
|
||||
**kwargs)
|
73
projects/medical/2d_image/x_ray/chest_image_pneum/tools/prepare_dataset.py
Executable file
73
projects/medical/2d_image/x_ray/chest_image_pneum/tools/prepare_dataset.py
Executable file
@ -0,0 +1,73 @@
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pydicom
|
||||
from PIL import Image
|
||||
|
||||
root_path = 'data/'
|
||||
img_suffix = '.dcm'
|
||||
seg_map_suffix = '.png'
|
||||
save_img_suffix = '.png'
|
||||
save_seg_map_suffix = '.png'
|
||||
|
||||
x_train = []
|
||||
for fpath, dirname, fnames in os.walk('data/chestimage_train_datasets'):
|
||||
for fname in fnames:
|
||||
if fname.endswith('.dcm'):
|
||||
x_train.append(os.path.join(fpath, fname))
|
||||
x_test = []
|
||||
for fpath, dirname, fnames in os.walk('data/chestimage_test_datasets/'):
|
||||
for fname in fnames:
|
||||
if fname.endswith('.dcm'):
|
||||
x_test.append(os.path.join(fpath, fname))
|
||||
|
||||
os.system('mkdir -p ' + root_path + 'images/train/')
|
||||
os.system('mkdir -p ' + root_path + 'images/test/')
|
||||
os.system('mkdir -p ' + root_path + 'masks/train/')
|
||||
|
||||
|
||||
def rle_decode(rle, width, height):
|
||||
mask = np.zeros(width * height, dtype=np.uint8)
|
||||
array = np.asarray([int(x) for x in rle.split()])
|
||||
starts = array[0::2]
|
||||
lengths = array[1::2]
|
||||
|
||||
current_position = 0
|
||||
for index, start in enumerate(starts):
|
||||
current_position += start
|
||||
mask[current_position:current_position + lengths[index]] = 1
|
||||
current_position += lengths[index]
|
||||
|
||||
return mask.reshape(width, height, order='F')
|
||||
|
||||
|
||||
part_dir_dict = {0: 'train/', 1: 'test/'}
|
||||
dict_from_csv = pd.read_csv(
|
||||
root_path + 'chestimage_train-rle_datasets.csv', sep=',',
|
||||
index_col=0).to_dict()[' EncodedPixels']
|
||||
|
||||
for ith, part in enumerate([x_train, x_test]):
|
||||
part_dir = part_dir_dict[ith]
|
||||
for img in part:
|
||||
basename = os.path.basename(img)
|
||||
img_id = '.'.join(basename.split('.')[:-1])
|
||||
if ith == 0 and (img_id not in dict_from_csv.keys()):
|
||||
continue
|
||||
image = pydicom.read_file(img).pixel_array
|
||||
save_img_path = root_path + 'images/' + part_dir + '.'.join(
|
||||
basename.split('.')[:-1]) + save_img_suffix
|
||||
print(save_img_path)
|
||||
img_h, img_w = image.shape[:2]
|
||||
image = Image.fromarray(image)
|
||||
image.save(save_img_path)
|
||||
if ith == 1:
|
||||
continue
|
||||
if dict_from_csv[img_id] == '-1':
|
||||
mask = np.zeros((img_h, img_w), dtype=np.uint8)
|
||||
else:
|
||||
mask = rle_decode(dict_from_csv[img_id], img_h, img_w)
|
||||
save_mask_path = root_path + 'masks/' + part_dir + '.'.join(
|
||||
basename.split('.')[:-1]) + save_seg_map_suffix
|
||||
mask = Image.fromarray(mask)
|
||||
mask.save(save_mask_path)
|
Loading…
x
Reference in New Issue
Block a user