Inverted Residual kept coherent with mmcl. Debug 0
parent
3bc95a4332
commit
661ef92a35
|
@ -1,10 +1,9 @@
|
|||
import torch.utils.checkpoint as cp
|
||||
from mmcv.cnn import ConvModule
|
||||
from mmcv.cnn import ConvModule, build_norm_layer
|
||||
from torch import nn
|
||||
|
||||
|
||||
class InvertedResidual(nn.Module):
|
||||
"""InvertedResidual block for MobileNetV2.
|
||||
"""Inverted residual module.
|
||||
|
||||
Args:
|
||||
in_channels (int): The input channels of the InvertedResidual block.
|
||||
|
@ -18,10 +17,6 @@ class InvertedResidual(nn.Module):
|
|||
Default: dict(type='BN').
|
||||
act_cfg (dict): Config dict for activation layer.
|
||||
Default: dict(type='ReLU6').
|
||||
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
|
||||
memory while slowing down the training speed. Default: False.
|
||||
Returns:
|
||||
Tensor: The output tensor
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
|
@ -29,60 +24,50 @@ class InvertedResidual(nn.Module):
|
|||
out_channels,
|
||||
stride,
|
||||
expand_ratio,
|
||||
dilation=1,
|
||||
conv_cfg=None,
|
||||
norm_cfg=dict(type='BN'),
|
||||
act_cfg=dict(type='ReLU6'),
|
||||
with_cp=False):
|
||||
act_cfg=dict(type='ReLU6')):
|
||||
super(InvertedResidual, self).__init__()
|
||||
self.stride = stride
|
||||
assert stride in [1, 2], f'stride must in [1, 2]. ' \
|
||||
f'But received {stride}.'
|
||||
self.with_cp = with_cp
|
||||
self.use_res_connect = self.stride == 1 and in_channels == out_channels
|
||||
assert stride in [1, 2]
|
||||
|
||||
hidden_dim = int(round(in_channels * expand_ratio))
|
||||
self.use_res_connect = self.stride == 1 \
|
||||
and in_channels == out_channels
|
||||
|
||||
layers = []
|
||||
if expand_ratio != 1:
|
||||
# pw
|
||||
layers.append(
|
||||
ConvModule(
|
||||
in_channels=in_channels,
|
||||
out_channels=hidden_dim,
|
||||
in_channels,
|
||||
hidden_dim,
|
||||
kernel_size=1,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg))
|
||||
layers.extend([
|
||||
# dw
|
||||
ConvModule(
|
||||
in_channels=hidden_dim,
|
||||
out_channels=hidden_dim,
|
||||
hidden_dim,
|
||||
hidden_dim,
|
||||
kernel_size=3,
|
||||
padding=dilation,
|
||||
stride=stride,
|
||||
padding=1,
|
||||
dilation=dilation,
|
||||
groups=hidden_dim,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg),
|
||||
ConvModule(
|
||||
in_channels=hidden_dim,
|
||||
out_channels=out_channels,
|
||||
kernel_size=1,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=None)
|
||||
# pw-linear
|
||||
nn.Conv2d(hidden_dim, out_channels, 1, 1, 0, bias=False),
|
||||
build_norm_layer(norm_cfg, out_channels)[1],
|
||||
])
|
||||
self.conv = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
def _inner_forward(x):
|
||||
if self.use_res_connect:
|
||||
return x + self.conv(x)
|
||||
else:
|
||||
return self.conv(x)
|
||||
|
||||
if self.with_cp and x.requires_grad:
|
||||
out = cp.checkpoint(_inner_forward, x)
|
||||
else:
|
||||
out = _inner_forward(x)
|
||||
|
||||
return out
|
||||
|
|
Loading…
Reference in New Issue