[Feature] Add PoolFormer (CVPR'2022) (#1537)

* [Feature] Add PoolFormer (CVPR'2022)

* Upload README.md, models and log.json

* fix wrong base config name in config file

* refactor alignresize

* delete align_resize.py

* change config name

* use ResizetoMultiple to replace AlignResize

* update readme

* fix config bug

* resolve conflict
pull/2132/head
MengzhangLI 2022-10-01 12:54:00 +08:00 committed by GitHub
parent ee25adc2c1
commit 6c746fad9c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 334 additions and 0 deletions

View File

@ -130,6 +130,7 @@ Supported backbones:
- [x] [BEiT (ICLR'2022)](configs/beit)
- [x] [ConvNeXt (CVPR'2022)](configs/convnext)
- [x] [MAE (CVPR'2022)](configs/mae)
- [x] [PoolFormer (CVPR'2022)](configs/poolformer)
Supported methods:

View File

@ -127,6 +127,7 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
- [x] [BEiT (ICLR'2022)](configs/beit)
- [x] [ConvNeXt (CVPR'2022)](configs/convnext)
- [x] [MAE (CVPR'2022)](configs/mae)
- [x] [PoolFormer (CVPR'2022)](configs/poolformer)
已支持的算法:

View File

@ -0,0 +1,42 @@
# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/poolformer/poolformer-s12_3rdparty_32xb128_in1k_20220414-f8d83051.pth' # noqa
custom_imports = dict(imports='mmcls.models', allow_failed_imports=False)
model = dict(
type='EncoderDecoder',
backbone=dict(
type='mmcls.PoolFormer',
arch='s12',
init_cfg=dict(
type='Pretrained', checkpoint=checkpoint_file, prefix='backbone.'),
in_patch_size=7,
in_stride=4,
in_pad=2,
down_patch_size=3,
down_stride=2,
down_pad=1,
drop_rate=0.,
drop_path_rate=0.,
out_indices=(0, 2, 4, 6),
frozen_stages=0,
),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=4),
decode_head=dict(
type='FPNHead',
in_channels=[256, 256, 256, 256],
in_index=[0, 1, 2, 3],
feature_strides=[4, 8, 16, 32],
channels=128,
dropout_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='whole'))

View File

@ -0,0 +1,63 @@
# PoolFormer
[MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418)
## Introduction
<!-- [BACKBONE] -->
<a href="https://github.com/sail-sg/poolformer/tree/main/segmentation">Official Repo</a>
<a href="https://github.com/open-mmlab/mmclassification/blob/v0.23.0/mmcls/models/backbones/poolformer.py#L198">Code Snippet</a>
## Abstract
<!-- [ABSTRACT] -->
Transformers have shown great potential in computer vision tasks. A common belief is their attention-based token mixer module contributes most to their competence. However, recent works show the attention-based module in transformers can be replaced by spatial MLPs and the resulted models still perform quite well. Based on this observation, we hypothesize that the general architecture of the transformers, instead of the specific token mixer module, is more essential to the model's performance. To verify this, we deliberately replace the attention module in transformers with an embarrassingly simple spatial pooling operator to conduct only the most basic token mixing. Surprisingly, we observe that the derived model, termed as PoolFormer, achieves competitive performance on multiple computer vision tasks. For example, on ImageNet-1K, PoolFormer achieves 82.1% top-1 accuracy, surpassing well-tuned vision transformer/MLP-like baselines DeiT-B/ResMLP-B24 by 0.3%/1.1% accuracy with 35%/52% fewer parameters and 48%/60% fewer MACs. The effectiveness of PoolFormer verifies our hypothesis and urges us to initiate the concept of "MetaFormer", a general architecture abstracted from transformers without specifying the token mixer. Based on the extensive experiments, we argue that MetaFormer is the key player in achieving superior results for recent transformer and MLP-like models on vision tasks. This work calls for more future research dedicated to improving MetaFormer instead of focusing on the token mixer modules. Additionally, our proposed PoolFormer could serve as a starting baseline for future MetaFormer architecture design. Code is available at [this https URL](https://github.com/sail-sg/poolformer)
<!-- [IMAGE] -->
<div align=center>
<img src="https://user-images.githubusercontent.com/15921929/144710761-1635f59a-abde-4946-984c-a2c3f22a19d2.png" width="70%"/>
</div>
## Citation
```bibtex
@inproceedings{yu2022metaformer,
title={Metaformer is actually what you need for vision},
author={Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={10819--10829},
year={2022}
}
```
### Usage
- PoolFormer backbone needs to install [MMClassification](https://github.com/open-mmlab/mmclassification) first, which has abundant backbones for downstream tasks.
```shell
pip install mmcls>=0.23.0
```
- The pretrained models could also be downloaded from [PoolFormer config of MMClassification](https://github.com/open-mmlab/mmclassification/tree/master/configs/poolformer).
## Results and models
### ADE20K
| Method | Backbone | Crop Size | pretrain | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | mIoU\* | mIoU\*(ms+flip) | config | download |
| ------ | -------------- | --------- | ----------- | ---------- | ------- | -------- | -------------- | ----- | ------------: | ------ | --------------: | ---------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| FPN | PoolFormer-S12 | 512x512 | ImageNet-1K | 32 | 40000 | 4.17 | 23.48 | 36.0 | 36.42 | 37.07 | 38.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154-b5aa2f49.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154.log.json) |
| FPN | PoolFormer-S24 | 512x512 | ImageNet-1K | 32 | 40000 | 5.47 | 15.74 | 39.35 | 39.73 | 40.36 | 41.08 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049-394a7cf7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049.log.json) |
| FPN | PoolFormer-S36 | 512x512 | ImageNet-1K | 32 | 40000 | 6.77 | 11.34 | 40.64 | 40.99 | 41.81 | 42.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k/fpn_poolformer_s36_8x4_512x512_40k_ade20k_20220501_151122-b47e607d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k/fpn_poolformer_s36_8x4_512x512_40k_ade20k_20220501_151122.log.json) |
| FPN | PoolFormer-M36 | 512x512 | ImageNet-1K | 32 | 40000 | 8.59 | 8.97 | 40.91 | 41.28 | 42.35 | 43.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230-3dc83921.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230.log.json) |
| FPN | PoolFormer-M48 | 512x512 | ImageNet-1K | 32 | 40000 | 10.48 | 6.69 | 41.82 | 42.2 | 42.76 | 43.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923-64168d3b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923.log.json) |
Note:
- We replace `AlignedResize` in original PoolFormer implementation to `Resize + ResizeToMultiple`.
- `mIoU` with * is collected when `Resize + ResizeToMultiple` is adopted in `test_pipeline`, so do `mIoU` in logs.

View File

@ -0,0 +1,11 @@
_base_ = './fpn_poolformer_s12_8x4_512x512_40k_ade20k.py'
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/poolformer/poolformer-m36_3rdparty_32xb128_in1k_20220414-c55e0949.pth' # noqa
# model settings
model = dict(
backbone=dict(
arch='m36',
init_cfg=dict(
type='Pretrained', checkpoint=checkpoint_file,
prefix='backbone.')),
neck=dict(in_channels=[96, 192, 384, 768]))

View File

@ -0,0 +1,11 @@
_base_ = './fpn_poolformer_s12_8x4_512x512_40k_ade20k.py'
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/poolformer/poolformer-m48_3rdparty_32xb128_in1k_20220414-9378f3eb.pth' # noqa
# model settings
model = dict(
backbone=dict(
arch='m48',
init_cfg=dict(
type='Pretrained', checkpoint=checkpoint_file,
prefix='backbone.')),
neck=dict(in_channels=[96, 192, 384, 768]))

View File

@ -0,0 +1,74 @@
_base_ = [
'../_base_/models/fpn_poolformer_s12.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_40k.py'
]
# model settings
model = dict(
neck=dict(in_channels=[64, 128, 320, 512]),
decode_head=dict(num_classes=150))
# optimizer
optimizer = dict(_delete_=True, type='AdamW', lr=0.0002, weight_decay=0.0001)
optimizer_config = dict()
# learning policy
lr_config = dict(policy='poly', power=0.9, min_lr=0.0, by_epoch=False)
# dataset settings
dataset_type = 'ADE20KDataset'
data_root = 'data/ade/ADEChallengeData2016'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 512)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', reduce_zero_label=True),
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 512),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='ResizeToMultiple', size_divisor=32),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(
type='RepeatDataset',
times=50,
dataset=dict(
type=dataset_type,
data_root=data_root,
img_dir='images/training',
ann_dir='annotations/training',
pipeline=train_pipeline)),
val=dict(
type=dataset_type,
data_root=data_root,
img_dir='images/validation',
ann_dir='annotations/validation',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
data_root=data_root,
img_dir='images/validation',
ann_dir='annotations/validation',
pipeline=test_pipeline))

View File

@ -0,0 +1,9 @@
_base_ = './fpn_poolformer_s12_8x4_512x512_40k_ade20k.py'
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/poolformer/poolformer-s24_3rdparty_32xb128_in1k_20220414-d7055904.pth' # noqa
# model settings
model = dict(
backbone=dict(
arch='s24',
init_cfg=dict(
type='Pretrained', checkpoint=checkpoint_file,
prefix='backbone.')))

View File

@ -0,0 +1,10 @@
_base_ = './fpn_poolformer_s12_8x4_512x512_40k_ade20k.py'
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/poolformer/poolformer-s36_3rdparty_32xb128_in1k_20220414-d78ff3e8.pth' # noqa
# model settings
model = dict(
backbone=dict(
arch='s36',
init_cfg=dict(
type='Pretrained', checkpoint=checkpoint_file,
prefix='backbone.')))

View File

@ -0,0 +1,111 @@
Models:
- Name: fpn_poolformer_s12_8x4_512x512_40k_ade20k
In Collection: FPN
Metadata:
backbone: PoolFormer-S12
crop size: (512,512)
lr schd: 40000
inference time (ms/im):
- value: 42.59
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 4.17
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 36.0
mIoU(ms+flip): 36.42
Config: configs/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s12_8x4_512x512_40k_ade20k/fpn_poolformer_s12_8x4_512x512_40k_ade20k_20220501_115154-b5aa2f49.pth
- Name: fpn_poolformer_s24_8x4_512x512_40k_ade20k
In Collection: FPN
Metadata:
backbone: PoolFormer-S24
crop size: (512,512)
lr schd: 40000
inference time (ms/im):
- value: 63.53
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 5.47
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 39.35
mIoU(ms+flip): 39.73
Config: configs/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s24_8x4_512x512_40k_ade20k/fpn_poolformer_s24_8x4_512x512_40k_ade20k_20220503_222049-394a7cf7.pth
- Name: fpn_poolformer_s36_8x4_512x512_40k_ade20k
In Collection: FPN
Metadata:
backbone: PoolFormer-S36
crop size: (512,512)
lr schd: 40000
inference time (ms/im):
- value: 88.18
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 6.77
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 40.64
mIoU(ms+flip): 40.99
Config: configs/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_s36_8x4_512x512_40k_ade20k/fpn_poolformer_s36_8x4_512x512_40k_ade20k_20220501_151122-b47e607d.pth
- Name: fpn_poolformer_m36_8x4_512x512_40k_ade20k
In Collection: FPN
Metadata:
backbone: PoolFormer-M36
crop size: (512,512)
lr schd: 40000
inference time (ms/im):
- value: 111.48
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 8.59
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 40.91
mIoU(ms+flip): 41.28
Config: configs/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m36_8x4_512x512_40k_ade20k/fpn_poolformer_m36_8x4_512x512_40k_ade20k_20220501_164230-3dc83921.pth
- Name: fpn_poolformer_m48_8x4_512x512_40k_ade20k
In Collection: FPN
Metadata:
backbone: PoolFormer-M48
crop size: (512,512)
lr schd: 40000
inference time (ms/im):
- value: 149.48
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 10.48
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 41.82
mIoU(ms+flip): 42.2
Config: configs/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/poolformer/fpn_poolformer_m48_8x4_512x512_40k_ade20k/fpn_poolformer_m48_8x4_512x512_40k_ade20k_20220504_003923-64168d3b.pth

View File

@ -30,6 +30,7 @@ Import:
- configs/nonlocal_net/nonlocal_net.yml
- configs/ocrnet/ocrnet.yml
- configs/point_rend/point_rend.yml
- configs/poolformer/poolformer.yml
- configs/psanet/psanet.yml
- configs/pspnet/pspnet.yml
- configs/resnest/resnest.yml