mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Feature] Generating and plotting confusion matrix (#1301)
* generate and plot confusion matrix * fix typo * add usage and examples for confusion matrix * deal with nan values(pick pr#7147 mmdet) * fix md format
This commit is contained in:
parent
38df41ea19
commit
6d124aa091
@ -378,3 +378,49 @@ configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py \
|
||||
checkpoint/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth \
|
||||
fcn
|
||||
```
|
||||
|
||||
## Confusion Matrix
|
||||
|
||||
In order to generate and plot a ```nxn``` confusion matrix where ```n``` is the number of classes, you can follow the steps:
|
||||
|
||||
### 1.Generate a prediction result in pkl format using `test.py`
|
||||
|
||||
```shell
|
||||
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${PATH_TO_RESULT_FILE}]
|
||||
```
|
||||
|
||||
Note that the argument for ```--eval``` should be ```None``` so that the result file contains numpy type of prediction results. The usage for distribution test is just the same.
|
||||
|
||||
Example:
|
||||
|
||||
```shell
|
||||
python tools/test.py \
|
||||
configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py \
|
||||
checkpoint/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth \
|
||||
--out result/pred_result.pkl
|
||||
```
|
||||
|
||||
### 2. Use ```confusion_matrix.py``` to generate and plot a confusion matrix
|
||||
|
||||
```shell
|
||||
python tools/confusion_matrix.py ${CONFIG_FILE} ${PATH_TO_RESULT_FILE} ${SAVE_DIR} --show
|
||||
```
|
||||
|
||||
Description of arguments:
|
||||
|
||||
- `config`: Path to the test config file.
|
||||
- `prediction_path`: Path to the prediction .pkl result.
|
||||
- `save_dir`: Directory where confusion matrix will be saved.
|
||||
- `--show`: Enable result visualize.
|
||||
- `--color-theme`: Theme of the matrix color map.
|
||||
- `--cfg_options`: Custom options to replace the config file.
|
||||
|
||||
Example:
|
||||
|
||||
```shell
|
||||
python tools/confusion_matrix.py \
|
||||
configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py \
|
||||
result/pred_result.pkl \
|
||||
result/confusion_matrix \
|
||||
--show
|
||||
```
|
||||
|
178
tools/confusion_matrix.py
Normal file
178
tools/confusion_matrix.py
Normal file
@ -0,0 +1,178 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import mmcv
|
||||
import numpy as np
|
||||
from matplotlib.ticker import MultipleLocator
|
||||
from mmcv import Config, DictAction
|
||||
|
||||
from mmseg.datasets import build_dataset
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Generate confusion matrix from segmentation results')
|
||||
parser.add_argument('config', help='test config file path')
|
||||
parser.add_argument(
|
||||
'prediction_path', help='prediction path where test .pkl result')
|
||||
parser.add_argument(
|
||||
'save_dir', help='directory where confusion matrix will be saved')
|
||||
parser.add_argument(
|
||||
'--show', action='store_true', help='show confusion matrix')
|
||||
parser.add_argument(
|
||||
'--color-theme',
|
||||
default='winter',
|
||||
help='theme of the matrix color map')
|
||||
parser.add_argument(
|
||||
'--cfg-options',
|
||||
nargs='+',
|
||||
action=DictAction,
|
||||
help='override some settings in the used config, the key-value pair '
|
||||
'in xxx=yyy format will be merged into config file. If the value to '
|
||||
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
||||
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
||||
'Note that the quotation marks are necessary and that no white space '
|
||||
'is allowed.')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def calculate_confusion_matrix(dataset, results):
|
||||
"""Calculate the confusion matrix.
|
||||
|
||||
Args:
|
||||
dataset (Dataset): Test or val dataset.
|
||||
results (list[ndarray]): A list of segmentation results in each image.
|
||||
"""
|
||||
n = len(dataset.CLASSES)
|
||||
confusion_matrix = np.zeros(shape=[n, n])
|
||||
assert len(dataset) == len(results)
|
||||
prog_bar = mmcv.ProgressBar(len(results))
|
||||
for idx, per_img_res in enumerate(results):
|
||||
res_segm = per_img_res
|
||||
gt_segm = dataset.get_gt_seg_map_by_idx(idx)
|
||||
inds = n * gt_segm + res_segm
|
||||
inds = inds.flatten()
|
||||
mat = np.bincount(inds, minlength=n**2).reshape(n, n)
|
||||
confusion_matrix += mat
|
||||
prog_bar.update()
|
||||
return confusion_matrix
|
||||
|
||||
|
||||
def plot_confusion_matrix(confusion_matrix,
|
||||
labels,
|
||||
save_dir=None,
|
||||
show=True,
|
||||
title='Normalized Confusion Matrix',
|
||||
color_theme='winter'):
|
||||
"""Draw confusion matrix with matplotlib.
|
||||
|
||||
Args:
|
||||
confusion_matrix (ndarray): The confusion matrix.
|
||||
labels (list[str]): List of class names.
|
||||
save_dir (str|optional): If set, save the confusion matrix plot to the
|
||||
given path. Default: None.
|
||||
show (bool): Whether to show the plot. Default: True.
|
||||
title (str): Title of the plot. Default: `Normalized Confusion Matrix`.
|
||||
color_theme (str): Theme of the matrix color map. Default: `winter`.
|
||||
"""
|
||||
# normalize the confusion matrix
|
||||
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis]
|
||||
confusion_matrix = \
|
||||
confusion_matrix.astype(np.float32) / per_label_sums * 100
|
||||
|
||||
num_classes = len(labels)
|
||||
fig, ax = plt.subplots(
|
||||
figsize=(2 * num_classes, 2 * num_classes * 0.8), dpi=180)
|
||||
cmap = plt.get_cmap(color_theme)
|
||||
im = ax.imshow(confusion_matrix, cmap=cmap)
|
||||
plt.colorbar(mappable=im, ax=ax)
|
||||
|
||||
title_font = {'weight': 'bold', 'size': 12}
|
||||
ax.set_title(title, fontdict=title_font)
|
||||
label_font = {'size': 10}
|
||||
plt.ylabel('Ground Truth Label', fontdict=label_font)
|
||||
plt.xlabel('Prediction Label', fontdict=label_font)
|
||||
|
||||
# draw locator
|
||||
xmajor_locator = MultipleLocator(1)
|
||||
xminor_locator = MultipleLocator(0.5)
|
||||
ax.xaxis.set_major_locator(xmajor_locator)
|
||||
ax.xaxis.set_minor_locator(xminor_locator)
|
||||
ymajor_locator = MultipleLocator(1)
|
||||
yminor_locator = MultipleLocator(0.5)
|
||||
ax.yaxis.set_major_locator(ymajor_locator)
|
||||
ax.yaxis.set_minor_locator(yminor_locator)
|
||||
|
||||
# draw grid
|
||||
ax.grid(True, which='minor', linestyle='-')
|
||||
|
||||
# draw label
|
||||
ax.set_xticks(np.arange(num_classes))
|
||||
ax.set_yticks(np.arange(num_classes))
|
||||
ax.set_xticklabels(labels)
|
||||
ax.set_yticklabels(labels)
|
||||
|
||||
ax.tick_params(
|
||||
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True)
|
||||
plt.setp(
|
||||
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor')
|
||||
|
||||
# draw confusion matrix value
|
||||
for i in range(num_classes):
|
||||
for j in range(num_classes):
|
||||
ax.text(
|
||||
j,
|
||||
i,
|
||||
'{}%'.format(
|
||||
round(confusion_matrix[i, j], 2
|
||||
) if not np.isnan(confusion_matrix[i, j]) else -1),
|
||||
ha='center',
|
||||
va='center',
|
||||
color='w',
|
||||
size=7)
|
||||
|
||||
ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1
|
||||
|
||||
fig.tight_layout()
|
||||
if save_dir is not None:
|
||||
plt.savefig(
|
||||
os.path.join(save_dir, 'confusion_matrix.png'), format='png')
|
||||
if show:
|
||||
plt.show()
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
cfg = Config.fromfile(args.config)
|
||||
if args.cfg_options is not None:
|
||||
cfg.merge_from_dict(args.cfg_options)
|
||||
|
||||
results = mmcv.load(args.prediction_path)
|
||||
|
||||
assert isinstance(results, list)
|
||||
if isinstance(results[0], np.ndarray):
|
||||
pass
|
||||
else:
|
||||
raise TypeError('invalid type of prediction results')
|
||||
|
||||
if isinstance(cfg.data.test, dict):
|
||||
cfg.data.test.test_mode = True
|
||||
elif isinstance(cfg.data.test, list):
|
||||
for ds_cfg in cfg.data.test:
|
||||
ds_cfg.test_mode = True
|
||||
|
||||
dataset = build_dataset(cfg.data.test)
|
||||
confusion_matrix = calculate_confusion_matrix(dataset, results)
|
||||
plot_confusion_matrix(
|
||||
confusion_matrix,
|
||||
dataset.CLASSES,
|
||||
save_dir=args.save_dir,
|
||||
show=args.show)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user