mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Feature] Generating and plotting confusion matrix (#1301)
* generate and plot confusion matrix * fix typo * add usage and examples for confusion matrix * deal with nan values(pick pr#7147 mmdet) * fix md format
This commit is contained in:
parent
38df41ea19
commit
6d124aa091
@ -378,3 +378,49 @@ configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py \
|
|||||||
checkpoint/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth \
|
checkpoint/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth \
|
||||||
fcn
|
fcn
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Confusion Matrix
|
||||||
|
|
||||||
|
In order to generate and plot a ```nxn``` confusion matrix where ```n``` is the number of classes, you can follow the steps:
|
||||||
|
|
||||||
|
### 1.Generate a prediction result in pkl format using `test.py`
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${PATH_TO_RESULT_FILE}]
|
||||||
|
```
|
||||||
|
|
||||||
|
Note that the argument for ```--eval``` should be ```None``` so that the result file contains numpy type of prediction results. The usage for distribution test is just the same.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python tools/test.py \
|
||||||
|
configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py \
|
||||||
|
checkpoint/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth \
|
||||||
|
--out result/pred_result.pkl
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Use ```confusion_matrix.py``` to generate and plot a confusion matrix
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python tools/confusion_matrix.py ${CONFIG_FILE} ${PATH_TO_RESULT_FILE} ${SAVE_DIR} --show
|
||||||
|
```
|
||||||
|
|
||||||
|
Description of arguments:
|
||||||
|
|
||||||
|
- `config`: Path to the test config file.
|
||||||
|
- `prediction_path`: Path to the prediction .pkl result.
|
||||||
|
- `save_dir`: Directory where confusion matrix will be saved.
|
||||||
|
- `--show`: Enable result visualize.
|
||||||
|
- `--color-theme`: Theme of the matrix color map.
|
||||||
|
- `--cfg_options`: Custom options to replace the config file.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python tools/confusion_matrix.py \
|
||||||
|
configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py \
|
||||||
|
result/pred_result.pkl \
|
||||||
|
result/confusion_matrix \
|
||||||
|
--show
|
||||||
|
```
|
||||||
|
178
tools/confusion_matrix.py
Normal file
178
tools/confusion_matrix.py
Normal file
@ -0,0 +1,178 @@
|
|||||||
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import mmcv
|
||||||
|
import numpy as np
|
||||||
|
from matplotlib.ticker import MultipleLocator
|
||||||
|
from mmcv import Config, DictAction
|
||||||
|
|
||||||
|
from mmseg.datasets import build_dataset
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description='Generate confusion matrix from segmentation results')
|
||||||
|
parser.add_argument('config', help='test config file path')
|
||||||
|
parser.add_argument(
|
||||||
|
'prediction_path', help='prediction path where test .pkl result')
|
||||||
|
parser.add_argument(
|
||||||
|
'save_dir', help='directory where confusion matrix will be saved')
|
||||||
|
parser.add_argument(
|
||||||
|
'--show', action='store_true', help='show confusion matrix')
|
||||||
|
parser.add_argument(
|
||||||
|
'--color-theme',
|
||||||
|
default='winter',
|
||||||
|
help='theme of the matrix color map')
|
||||||
|
parser.add_argument(
|
||||||
|
'--cfg-options',
|
||||||
|
nargs='+',
|
||||||
|
action=DictAction,
|
||||||
|
help='override some settings in the used config, the key-value pair '
|
||||||
|
'in xxx=yyy format will be merged into config file. If the value to '
|
||||||
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
||||||
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
||||||
|
'Note that the quotation marks are necessary and that no white space '
|
||||||
|
'is allowed.')
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_confusion_matrix(dataset, results):
|
||||||
|
"""Calculate the confusion matrix.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dataset (Dataset): Test or val dataset.
|
||||||
|
results (list[ndarray]): A list of segmentation results in each image.
|
||||||
|
"""
|
||||||
|
n = len(dataset.CLASSES)
|
||||||
|
confusion_matrix = np.zeros(shape=[n, n])
|
||||||
|
assert len(dataset) == len(results)
|
||||||
|
prog_bar = mmcv.ProgressBar(len(results))
|
||||||
|
for idx, per_img_res in enumerate(results):
|
||||||
|
res_segm = per_img_res
|
||||||
|
gt_segm = dataset.get_gt_seg_map_by_idx(idx)
|
||||||
|
inds = n * gt_segm + res_segm
|
||||||
|
inds = inds.flatten()
|
||||||
|
mat = np.bincount(inds, minlength=n**2).reshape(n, n)
|
||||||
|
confusion_matrix += mat
|
||||||
|
prog_bar.update()
|
||||||
|
return confusion_matrix
|
||||||
|
|
||||||
|
|
||||||
|
def plot_confusion_matrix(confusion_matrix,
|
||||||
|
labels,
|
||||||
|
save_dir=None,
|
||||||
|
show=True,
|
||||||
|
title='Normalized Confusion Matrix',
|
||||||
|
color_theme='winter'):
|
||||||
|
"""Draw confusion matrix with matplotlib.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
confusion_matrix (ndarray): The confusion matrix.
|
||||||
|
labels (list[str]): List of class names.
|
||||||
|
save_dir (str|optional): If set, save the confusion matrix plot to the
|
||||||
|
given path. Default: None.
|
||||||
|
show (bool): Whether to show the plot. Default: True.
|
||||||
|
title (str): Title of the plot. Default: `Normalized Confusion Matrix`.
|
||||||
|
color_theme (str): Theme of the matrix color map. Default: `winter`.
|
||||||
|
"""
|
||||||
|
# normalize the confusion matrix
|
||||||
|
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis]
|
||||||
|
confusion_matrix = \
|
||||||
|
confusion_matrix.astype(np.float32) / per_label_sums * 100
|
||||||
|
|
||||||
|
num_classes = len(labels)
|
||||||
|
fig, ax = plt.subplots(
|
||||||
|
figsize=(2 * num_classes, 2 * num_classes * 0.8), dpi=180)
|
||||||
|
cmap = plt.get_cmap(color_theme)
|
||||||
|
im = ax.imshow(confusion_matrix, cmap=cmap)
|
||||||
|
plt.colorbar(mappable=im, ax=ax)
|
||||||
|
|
||||||
|
title_font = {'weight': 'bold', 'size': 12}
|
||||||
|
ax.set_title(title, fontdict=title_font)
|
||||||
|
label_font = {'size': 10}
|
||||||
|
plt.ylabel('Ground Truth Label', fontdict=label_font)
|
||||||
|
plt.xlabel('Prediction Label', fontdict=label_font)
|
||||||
|
|
||||||
|
# draw locator
|
||||||
|
xmajor_locator = MultipleLocator(1)
|
||||||
|
xminor_locator = MultipleLocator(0.5)
|
||||||
|
ax.xaxis.set_major_locator(xmajor_locator)
|
||||||
|
ax.xaxis.set_minor_locator(xminor_locator)
|
||||||
|
ymajor_locator = MultipleLocator(1)
|
||||||
|
yminor_locator = MultipleLocator(0.5)
|
||||||
|
ax.yaxis.set_major_locator(ymajor_locator)
|
||||||
|
ax.yaxis.set_minor_locator(yminor_locator)
|
||||||
|
|
||||||
|
# draw grid
|
||||||
|
ax.grid(True, which='minor', linestyle='-')
|
||||||
|
|
||||||
|
# draw label
|
||||||
|
ax.set_xticks(np.arange(num_classes))
|
||||||
|
ax.set_yticks(np.arange(num_classes))
|
||||||
|
ax.set_xticklabels(labels)
|
||||||
|
ax.set_yticklabels(labels)
|
||||||
|
|
||||||
|
ax.tick_params(
|
||||||
|
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True)
|
||||||
|
plt.setp(
|
||||||
|
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor')
|
||||||
|
|
||||||
|
# draw confusion matrix value
|
||||||
|
for i in range(num_classes):
|
||||||
|
for j in range(num_classes):
|
||||||
|
ax.text(
|
||||||
|
j,
|
||||||
|
i,
|
||||||
|
'{}%'.format(
|
||||||
|
round(confusion_matrix[i, j], 2
|
||||||
|
) if not np.isnan(confusion_matrix[i, j]) else -1),
|
||||||
|
ha='center',
|
||||||
|
va='center',
|
||||||
|
color='w',
|
||||||
|
size=7)
|
||||||
|
|
||||||
|
ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1
|
||||||
|
|
||||||
|
fig.tight_layout()
|
||||||
|
if save_dir is not None:
|
||||||
|
plt.savefig(
|
||||||
|
os.path.join(save_dir, 'confusion_matrix.png'), format='png')
|
||||||
|
if show:
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = parse_args()
|
||||||
|
|
||||||
|
cfg = Config.fromfile(args.config)
|
||||||
|
if args.cfg_options is not None:
|
||||||
|
cfg.merge_from_dict(args.cfg_options)
|
||||||
|
|
||||||
|
results = mmcv.load(args.prediction_path)
|
||||||
|
|
||||||
|
assert isinstance(results, list)
|
||||||
|
if isinstance(results[0], np.ndarray):
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
raise TypeError('invalid type of prediction results')
|
||||||
|
|
||||||
|
if isinstance(cfg.data.test, dict):
|
||||||
|
cfg.data.test.test_mode = True
|
||||||
|
elif isinstance(cfg.data.test, list):
|
||||||
|
for ds_cfg in cfg.data.test:
|
||||||
|
ds_cfg.test_mode = True
|
||||||
|
|
||||||
|
dataset = build_dataset(cfg.data.test)
|
||||||
|
confusion_matrix = calculate_confusion_matrix(dataset, results)
|
||||||
|
plot_confusion_matrix(
|
||||||
|
confusion_matrix,
|
||||||
|
dataset.CLASSES,
|
||||||
|
save_dir=args.save_dir,
|
||||||
|
show=args.show)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user