mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Benchmark] Uploading FastFCN on ADE20K (#972)
* Uploading FastFCN on ADE20K * fixing lint error
This commit is contained in:
parent
54bd4bdd82
commit
6d35d76195
@ -35,6 +35,17 @@ year={2019}
|
||||
| EncNet + JPU | R-50-D32 | 512x1024 | 80000 | 8.15 | 4.77 | 77.97 |79.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036-78da5046.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036.log.json) |
|
||||
| EncNet + JPU (4x4)| R-50-D32 | 512x1024 | 80000 | 15.45 | - | 78.6 | 80.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217-e1eb6dbb.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217.log.json) |
|
||||
|
||||
### ADE20K
|
||||
|
||||
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
|
||||
| --------- | --------- | --------- | ------: | -------- | -------------- | ----: | ------------- | --------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| DeepLabV3 + JPU | R-50-D32 | 512x1024 | 80000 | 8.46 | 12.06 | 41.88 | 42.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619-3aa40f2d.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619.log.json) |
|
||||
| DeepLabV3 + JPU | R-50-D32 | 512x1024 | 160000 | - | - | 43.58 | 44.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246-27036aee.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246.log.json) |
|
||||
| PSPNet + JPU | R-50-D32 | 512x1024 | 80000 | 8.02 | 19.21 | 41.40 | 42.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137-993d07c8.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137.log.json) |
|
||||
| PSPNet + JPU | R-50-D32 | 512x1024 | 160000 | - | - | 42.63 | 43.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455-e8f5a2fd.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455.log.json) |
|
||||
| EncNet + JPU | R-50-D32 | 512x1024 | 80000 | 9.67 | 17.23 | 40.88 | 42.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214-65aef6dd.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214.log.json) |
|
||||
| EncNet + JPU | R-50-D32 | 512x1024 | 160000 | - | - | 42.50 | 44.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456-d875ce3c.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456.log.json) |
|
||||
|
||||
Note:
|
||||
|
||||
- `4x4` means 4 GPUs with 4 samples per GPU in training, default setting is 4 GPUs with 2 samples per GPU in training.
|
||||
|
@ -3,6 +3,7 @@ Collections:
|
||||
Metadata:
|
||||
Training Data:
|
||||
- Cityscapes
|
||||
- ADE20K
|
||||
Paper:
|
||||
URL: https://arxiv.org/abs/1903.11816
|
||||
Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation'
|
||||
@ -124,3 +125,111 @@ Models:
|
||||
mIoU(ms+flip): 80.25
|
||||
Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217-e1eb6dbb.pth
|
||||
- Name: fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k
|
||||
In Collection: fastfcn
|
||||
Metadata:
|
||||
backbone: R-50-D32
|
||||
crop size: (512,1024)
|
||||
lr schd: 80000
|
||||
inference time (ms/im):
|
||||
- value: 82.92
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 8.46
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Metrics:
|
||||
mIoU: 41.88
|
||||
mIoU(ms+flip): 42.91
|
||||
Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619-3aa40f2d.pth
|
||||
- Name: fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k
|
||||
In Collection: fastfcn
|
||||
Metadata:
|
||||
backbone: R-50-D32
|
||||
crop size: (512,1024)
|
||||
lr schd: 160000
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Metrics:
|
||||
mIoU: 43.58
|
||||
mIoU(ms+flip): 44.92
|
||||
Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246-27036aee.pth
|
||||
- Name: fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k
|
||||
In Collection: fastfcn
|
||||
Metadata:
|
||||
backbone: R-50-D32
|
||||
crop size: (512,1024)
|
||||
lr schd: 80000
|
||||
inference time (ms/im):
|
||||
- value: 52.06
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 8.02
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Metrics:
|
||||
mIoU: 41.4
|
||||
mIoU(ms+flip): 42.12
|
||||
Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137-993d07c8.pth
|
||||
- Name: fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k
|
||||
In Collection: fastfcn
|
||||
Metadata:
|
||||
backbone: R-50-D32
|
||||
crop size: (512,1024)
|
||||
lr schd: 160000
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Metrics:
|
||||
mIoU: 42.63
|
||||
mIoU(ms+flip): 43.71
|
||||
Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455-e8f5a2fd.pth
|
||||
- Name: fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k
|
||||
In Collection: fastfcn
|
||||
Metadata:
|
||||
backbone: R-50-D32
|
||||
crop size: (512,1024)
|
||||
lr schd: 80000
|
||||
inference time (ms/im):
|
||||
- value: 58.04
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,1024)
|
||||
memory (GB): 9.67
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Metrics:
|
||||
mIoU: 40.88
|
||||
mIoU(ms+flip): 42.36
|
||||
Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214-65aef6dd.pth
|
||||
- Name: fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k
|
||||
In Collection: fastfcn
|
||||
Metadata:
|
||||
backbone: R-50-D32
|
||||
crop size: (512,1024)
|
||||
lr schd: 160000
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Metrics:
|
||||
mIoU: 42.5
|
||||
mIoU(ms+flip): 44.21
|
||||
Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456-d875ce3c.pth
|
||||
|
@ -0,0 +1,20 @@
|
||||
# model settings
|
||||
_base_ = './fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k.py'
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
decode_head=dict(
|
||||
_delete_=True,
|
||||
type='ASPPHead',
|
||||
in_channels=2048,
|
||||
in_index=2,
|
||||
channels=512,
|
||||
dilations=(1, 12, 24, 36),
|
||||
dropout_ratio=0.1,
|
||||
num_classes=150,
|
||||
norm_cfg=norm_cfg,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
# model training and testing settings
|
||||
train_cfg=dict(),
|
||||
test_cfg=dict(mode='whole'))
|
@ -0,0 +1,20 @@
|
||||
# model settings
|
||||
_base_ = './fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k.py'
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
decode_head=dict(
|
||||
_delete_=True,
|
||||
type='ASPPHead',
|
||||
in_channels=2048,
|
||||
in_index=2,
|
||||
channels=512,
|
||||
dilations=(1, 12, 24, 36),
|
||||
dropout_ratio=0.1,
|
||||
num_classes=150,
|
||||
norm_cfg=norm_cfg,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
# model training and testing settings
|
||||
train_cfg=dict(),
|
||||
test_cfg=dict(mode='whole'))
|
@ -0,0 +1,24 @@
|
||||
# model settings
|
||||
_base_ = './fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k.py'
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
decode_head=dict(
|
||||
_delete_=True,
|
||||
type='EncHead',
|
||||
in_channels=[512, 1024, 2048],
|
||||
in_index=(0, 1, 2),
|
||||
channels=512,
|
||||
num_codes=32,
|
||||
use_se_loss=True,
|
||||
add_lateral=False,
|
||||
dropout_ratio=0.1,
|
||||
num_classes=150,
|
||||
norm_cfg=norm_cfg,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
||||
loss_se_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.2)),
|
||||
# model training and testing settings
|
||||
train_cfg=dict(),
|
||||
test_cfg=dict(mode='whole'))
|
@ -0,0 +1,24 @@
|
||||
# model settings
|
||||
_base_ = './fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k.py'
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
decode_head=dict(
|
||||
_delete_=True,
|
||||
type='EncHead',
|
||||
in_channels=[512, 1024, 2048],
|
||||
in_index=(0, 1, 2),
|
||||
channels=512,
|
||||
num_codes=32,
|
||||
use_se_loss=True,
|
||||
add_lateral=False,
|
||||
dropout_ratio=0.1,
|
||||
num_classes=150,
|
||||
norm_cfg=norm_cfg,
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
||||
loss_se_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.2)),
|
||||
# model training and testing settings
|
||||
train_cfg=dict(),
|
||||
test_cfg=dict(mode='whole'))
|
@ -0,0 +1,7 @@
|
||||
_base_ = [
|
||||
'../_base_/models/fastfcn_r50-d32_jpu_psp.py',
|
||||
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py',
|
||||
'../_base_/schedules/schedule_160k.py'
|
||||
]
|
||||
model = dict(
|
||||
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
|
@ -0,0 +1,7 @@
|
||||
_base_ = [
|
||||
'../_base_/models/fastfcn_r50-d32_jpu_psp.py',
|
||||
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py',
|
||||
'../_base_/schedules/schedule_80k.py'
|
||||
]
|
||||
model = dict(
|
||||
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
|
Loading…
x
Reference in New Issue
Block a user