fixing dice metric in unet (#1041)

This commit is contained in:
MengzhangLI 2021-11-16 20:14:17 +08:00 committed by GitHub
parent 008856a84c
commit 6d88b07084
2 changed files with 13 additions and 13 deletions

View File

@ -176,7 +176,7 @@ def parse_md(md_file):
'Task': 'Semantic Segmentation', 'Task': 'Semantic Segmentation',
'Dataset': current_dataset, 'Dataset': current_dataset,
'Metrics': { 'Metrics': {
'mIoU': float(els[ss_id]), cols[ss_id]: float(els[ss_id]),
}, },
}, },
], ],

View File

@ -27,7 +27,7 @@ Models:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: DRIVE Dataset: DRIVE
Metrics: Metrics:
mIoU: 78.67 Dice: 78.67
Config: configs/unet/fcn_unet_s5-d16_64x64_40k_drive.py Config: configs/unet/fcn_unet_s5-d16_64x64_40k_drive.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth
- Name: pspnet_unet_s5-d16_64x64_40k_drive - Name: pspnet_unet_s5-d16_64x64_40k_drive
@ -41,7 +41,7 @@ Models:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: DRIVE Dataset: DRIVE
Metrics: Metrics:
mIoU: 78.62 Dice: 78.62
Config: configs/unet/pspnet_unet_s5-d16_64x64_40k_drive.py Config: configs/unet/pspnet_unet_s5-d16_64x64_40k_drive.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth
- Name: deeplabv3_unet_s5-d16_64x64_40k_drive - Name: deeplabv3_unet_s5-d16_64x64_40k_drive
@ -55,7 +55,7 @@ Models:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: DRIVE Dataset: DRIVE
Metrics: Metrics:
mIoU: 78.69 Dice: 78.69
Config: configs/unet/deeplabv3_unet_s5-d16_64x64_40k_drive.py Config: configs/unet/deeplabv3_unet_s5-d16_64x64_40k_drive.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth
- Name: fcn_unet_s5-d16_128x128_40k_stare - Name: fcn_unet_s5-d16_128x128_40k_stare
@ -69,7 +69,7 @@ Models:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: STARE Dataset: STARE
Metrics: Metrics:
mIoU: 81.02 Dice: 81.02
Config: configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py Config: configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth
- Name: pspnet_unet_s5-d16_128x128_40k_stare - Name: pspnet_unet_s5-d16_128x128_40k_stare
@ -83,7 +83,7 @@ Models:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: STARE Dataset: STARE
Metrics: Metrics:
mIoU: 81.22 Dice: 81.22
Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_stare.py Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_stare.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth
- Name: deeplabv3_unet_s5-d16_128x128_40k_stare - Name: deeplabv3_unet_s5-d16_128x128_40k_stare
@ -97,7 +97,7 @@ Models:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: STARE Dataset: STARE
Metrics: Metrics:
mIoU: 80.93 Dice: 80.93
Config: configs/unet/deeplabv3_unet_s5-d16_128x128_40k_stare.py Config: configs/unet/deeplabv3_unet_s5-d16_128x128_40k_stare.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth
- Name: fcn_unet_s5-d16_128x128_40k_chase_db1 - Name: fcn_unet_s5-d16_128x128_40k_chase_db1
@ -111,7 +111,7 @@ Models:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: CHASE_DB1 Dataset: CHASE_DB1
Metrics: Metrics:
mIoU: 80.24 Dice: 80.24
Config: configs/unet/fcn_unet_s5-d16_128x128_40k_chase_db1.py Config: configs/unet/fcn_unet_s5-d16_128x128_40k_chase_db1.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth
- Name: pspnet_unet_s5-d16_128x128_40k_chase_db1 - Name: pspnet_unet_s5-d16_128x128_40k_chase_db1
@ -125,7 +125,7 @@ Models:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: CHASE_DB1 Dataset: CHASE_DB1
Metrics: Metrics:
mIoU: 80.36 Dice: 80.36
Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1.py Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth
- Name: deeplabv3_unet_s5-d16_128x128_40k_chase_db1 - Name: deeplabv3_unet_s5-d16_128x128_40k_chase_db1
@ -139,7 +139,7 @@ Models:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: CHASE_DB1 Dataset: CHASE_DB1
Metrics: Metrics:
mIoU: 80.47 Dice: 80.47
Config: configs/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py Config: configs/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth
- Name: fcn_unet_s5-d16_256x256_40k_hrf - Name: fcn_unet_s5-d16_256x256_40k_hrf
@ -153,7 +153,7 @@ Models:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: HRF Dataset: HRF
Metrics: Metrics:
mIoU: 79.45 Dice: 79.45
Config: configs/unet/fcn_unet_s5-d16_256x256_40k_hrf.py Config: configs/unet/fcn_unet_s5-d16_256x256_40k_hrf.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth
- Name: pspnet_unet_s5-d16_256x256_40k_hrf - Name: pspnet_unet_s5-d16_256x256_40k_hrf
@ -167,7 +167,7 @@ Models:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: HRF Dataset: HRF
Metrics: Metrics:
mIoU: 80.07 Dice: 80.07
Config: configs/unet/pspnet_unet_s5-d16_256x256_40k_hrf.py Config: configs/unet/pspnet_unet_s5-d16_256x256_40k_hrf.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth
- Name: deeplabv3_unet_s5-d16_256x256_40k_hrf - Name: deeplabv3_unet_s5-d16_256x256_40k_hrf
@ -181,6 +181,6 @@ Models:
- Task: Semantic Segmentation - Task: Semantic Segmentation
Dataset: HRF Dataset: HRF
Metrics: Metrics:
mIoU: 80.21 Dice: 80.21
Config: configs/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf.py Config: configs/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth