support padding in test and fix remove gt padding at post_process

This commit is contained in:
xiexinch 2022-11-10 14:21:05 +08:00
parent 7927591a22
commit 70daaaad59
2 changed files with 50 additions and 25 deletions

View File

@ -48,18 +48,28 @@ class SegDataPreProcessor(BaseDataPreprocessor):
rgb_to_bgr (bool): whether to convert image from RGB to RGB.
Defaults to False.
batch_augments (list[dict], optional): Batch-level augmentations
train_cfg (dict, optional): The padding size config in training, if
not specify, will use `size` and `size_divisor` params as default.
Defaults to None, only supports keys `size` or `size_divisor`.
test_cfg (dict, optional): The padding size config in testing, if not
specify, will use `size` and `size_divisor` params as default.
Defaults to None, only supports keys `size` or `size_divisor`.
"""
def __init__(self,
mean: Sequence[Number] = None,
std: Sequence[Number] = None,
size: Optional[tuple] = None,
size_divisor: Optional[int] = None,
pad_val: Number = 0,
seg_pad_val: Number = 255,
bgr_to_rgb: bool = False,
rgb_to_bgr: bool = False,
batch_augments: Optional[List[dict]] = None):
def __init__(
self,
mean: Sequence[Number] = None,
std: Sequence[Number] = None,
size: Optional[tuple] = None,
size_divisor: Optional[int] = None,
pad_val: Number = 0,
seg_pad_val: Number = 255,
bgr_to_rgb: bool = False,
rgb_to_bgr: bool = False,
batch_augments: Optional[List[dict]] = None,
train_cfg: dict = None,
test_cfg: dict = None,
):
super().__init__()
self.size = size
self.size_divisor = size_divisor
@ -86,6 +96,11 @@ class SegDataPreProcessor(BaseDataPreprocessor):
# TODO: support batch augmentations.
self.batch_augments = batch_augments
# Support different padding methods in training and testing
default_size_cfg = dict(size=size, size_divisor=size_divisor)
self.train_cfg = train_cfg if train_cfg else default_size_cfg
self.test_cfg = test_cfg if test_cfg else default_size_cfg
def forward(self, data: dict, training: bool = False) -> Dict[str, Any]:
"""Perform normalization、padding and bgr2rgb conversion based on
``BaseDataPreprocessor``.
@ -111,21 +126,24 @@ class SegDataPreProcessor(BaseDataPreprocessor):
if training:
assert data_samples is not None, ('During training, ',
'`data_samples` must be define.')
inputs, data_samples = stack_batch(
inputs=inputs,
data_samples=data_samples,
size=self.size,
size_divisor=self.size_divisor,
pad_val=self.pad_val,
seg_pad_val=self.seg_pad_val)
if self.batch_augments is not None:
inputs, data_samples = self.batch_augments(
inputs, data_samples)
return dict(inputs=inputs, data_samples=data_samples)
else:
assert len(inputs) == 1, (
'Batch inference is not support currently, '
'as the image size might be different in a batch')
return dict(
inputs=torch.stack(inputs, dim=0), data_samples=data_samples)
size_cfg = self.train_cfg if training else self.test_cfg
size = size_cfg.get('size', None)
size_divisor = size_cfg.get('size_divisor', None)
inputs, data_samples = stack_batch(
inputs=inputs,
data_samples=data_samples,
size=size,
size_divisor=size_divisor,
pad_val=self.pad_val,
seg_pad_val=self.seg_pad_val)
if self.batch_augments is not None:
inputs, data_samples = self.batch_augments(inputs, data_samples)
return dict(inputs=inputs, data_samples=data_samples)

View File

@ -165,6 +165,11 @@ class BaseSegmentor(BaseModel, metaclass=ABCMeta):
i_seg_logits = seg_logits[i:i + 1, :,
padding_top:H - padding_bottom,
padding_left:W - padding_right]
i_gt_sem_seg = data_samples[i].gt_sem_seg[:, padding_top:H -
padding_bottom,
padding_left:W -
padding_right]
# resize as original shape
i_seg_logits = resize(
i_seg_logits,
@ -184,7 +189,9 @@ class BaseSegmentor(BaseModel, metaclass=ABCMeta):
'seg_logits':
PixelData(**{'data': i_seg_logits}),
'pred_sem_seg':
PixelData(**{'data': i_seg_pred})
PixelData(**{'data': i_seg_pred}),
'gt_sem_seg':
PixelData(**{'data': i_gt_sem_seg})
})
return data_samples