mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Fix] Fix Segmenter-l readme (#1695)
* [Fix] Fix Segmenter-l readme * fix
This commit is contained in:
parent
e8dfa3f26b
commit
733ad9ef6e
@ -71,7 +71,7 @@ In our default setting, pretrained models and their corresponding [ViT-AugReg](h
|
|||||||
| Segmenter Linear | ViT-S_16 | 512x512 | 160000 | 1.78 | 28.07 | 45.75 | 46.82 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713-39658c46.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713.log.json) |
|
| Segmenter Linear | ViT-S_16 | 512x512 | 160000 | 1.78 | 28.07 | 45.75 | 46.82 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713-39658c46.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713.log.json) |
|
||||||
| Segmenter Mask | ViT-S_16 | 512x512 | 160000 | 2.03 | 24.80 | 46.19 | 47.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706-511bb103.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) |
|
| Segmenter Mask | ViT-S_16 | 512x512 | 160000 | 2.03 | 24.80 | 46.19 | 47.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706-511bb103.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) |
|
||||||
| Segmenter Mask | ViT-B_16 | 512x512 | 160000 | 4.20 | 13.20 | 49.60 | 51.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) |
|
| Segmenter Mask | ViT-B_16 | 512x512 | 160000 | 4.20 | 13.20 | 49.60 | 51.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) |
|
||||||
| Segmenter Mask | ViT-L_16 | 640x640 | 160000 | 16.56 | 2.62 | 52.16 | 53.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750-7ef345be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750.log.json) |
|
| Segmenter Mask | ViT-L_16 | 640x640 | 160000 | 16.99 | 3.03 | 51.65 | 53.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segmenter/segmenter_vit-l_mask_8x1_640x640_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_640x640_160k_ade20k/segmenter_vit-l_mask_8x1_640x640_160k_ade20k_20220614_024513-4783a347.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_640x640_160k_ade20k/segmenter_vit-l_mask_8x1_640x640_160k_ade20k_20220614_024513.log.json) |
|
||||||
|
|
||||||
Note:
|
Note:
|
||||||
|
|
||||||
|
@ -101,25 +101,25 @@ Models:
|
|||||||
mIoU(ms+flip): 51.07
|
mIoU(ms+flip): 51.07
|
||||||
Config: configs/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k.py
|
Config: configs/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k.py
|
||||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth
|
||||||
- Name: segmenter_vit-l_mask_8x1_512x512_160k_ade20k
|
- Name: segmenter_vit-l_mask_8x1_640x640_160k_ade20k
|
||||||
In Collection: Segmenter
|
In Collection: Segmenter
|
||||||
Metadata:
|
Metadata:
|
||||||
backbone: ViT-L_16
|
backbone: ViT-L_16
|
||||||
crop size: (640,640)
|
crop size: (640,640)
|
||||||
lr schd: 160000
|
lr schd: 160000
|
||||||
inference time (ms/im):
|
inference time (ms/im):
|
||||||
- value: 381.68
|
- value: 330.03
|
||||||
hardware: V100
|
hardware: V100
|
||||||
backend: PyTorch
|
backend: PyTorch
|
||||||
batch size: 1
|
batch size: 1
|
||||||
mode: FP32
|
mode: FP32
|
||||||
resolution: (640,640)
|
resolution: (640,640)
|
||||||
Training Memory (GB): 16.56
|
Training Memory (GB): 16.99
|
||||||
Results:
|
Results:
|
||||||
- Task: Semantic Segmentation
|
- Task: Semantic Segmentation
|
||||||
Dataset: ADE20K
|
Dataset: ADE20K
|
||||||
Metrics:
|
Metrics:
|
||||||
mIoU: 52.16
|
mIoU: 51.65
|
||||||
mIoU(ms+flip): 53.65
|
mIoU(ms+flip): 53.58
|
||||||
Config: configs/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k.py
|
Config: configs/segmenter/segmenter_vit-l_mask_8x1_640x640_160k_ade20k.py
|
||||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750-7ef345be.pth
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_640x640_160k_ade20k/segmenter_vit-l_mask_8x1_640x640_160k_ade20k_20220614_024513-4783a347.pth
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
_base_ = [
|
_base_ = [
|
||||||
'../_base_/models/segmenter_vit-b16_mask.py',
|
'../_base_/models/segmenter_vit-b16_mask.py',
|
||||||
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py',
|
'../_base_/datasets/ade20k_640x640.py', '../_base_/default_runtime.py',
|
||||||
'../_base_/schedules/schedule_160k.py'
|
'../_base_/schedules/schedule_160k.py'
|
||||||
]
|
]
|
||||||
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segmenter/vit_large_p16_384_20220308-d4efb41d.pth' # noqa
|
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segmenter/vit_large_p16_384_20220308-d4efb41d.pth' # noqa
|
||||||
@ -29,7 +29,7 @@ crop_size = (640, 640)
|
|||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
dict(type='LoadAnnotations', reduce_zero_label=True),
|
dict(type='LoadAnnotations', reduce_zero_label=True),
|
||||||
dict(type='Resize', img_scale=(2048, 640), ratio_range=(0.5, 2.0)),
|
dict(type='Resize', img_scale=(2560, 640), ratio_range=(0.5, 2.0)),
|
||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
@ -42,7 +42,7 @@ test_pipeline = [
|
|||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
dict(
|
dict(
|
||||||
type='MultiScaleFlipAug',
|
type='MultiScaleFlipAug',
|
||||||
img_scale=(2048, 640),
|
img_scale=(2560, 640),
|
||||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||||
flip=False,
|
flip=False,
|
||||||
transforms=[
|
transforms=[
|
Loading…
x
Reference in New Issue
Block a user