mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Feature] Support NYU depth estimation dataset (#3269)
Thanks for your contribution and we appreciate it a lot. The following instructions would make your pull request more healthy and more easily get feedback. If you do not understand some items, don't worry, just make the pull request and seek help from maintainers. ## Motivation Please describe the motivation of this PR and the goal you want to achieve through this PR. ## Modification Please briefly describe what modification is made in this PR. 1. add `NYUDataset`class 2. add script to process NYU dataset 3. add transforms for loading depth map 4. add docs & unittest ## BC-breaking (Optional) Does the modification introduce changes that break the backward-compatibility of the downstream repos? If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR. ## Use cases (Optional) If this PR introduces a new feature, it is better to list some use cases here, and update the documentation. ## Checklist 1. Pre-commit or other linting tools are used to fix the potential lint issues. 5. The modification is covered by complete unit tests. If not, please add more unit test to ensure the correctness. 6. If the modification has potential influence on downstream projects, this PR should be tested with downstream projects, like MMDet or MMDet3D. 7. The documentation has been modified accordingly, like docstring or example tutorials.
This commit is contained in:
parent
92774182ba
commit
788b37f78f
@ -198,6 +198,13 @@ mmsegmentation
|
||||
| │ │ │ └── rles
|
||||
| │ │ │ │ ├──sem_seg_train.json
|
||||
| │ │ │ │ └──sem_seg_val.json
|
||||
│ ├── nyu
|
||||
│ │ ├── images
|
||||
│ │ │ ├── train
|
||||
│ │ │ ├── test
|
||||
│ │ ├── annotations
|
||||
│ │ │ ├── train
|
||||
│ │ │ ├── test
|
||||
```
|
||||
|
||||
## Download dataset via MIM
|
||||
@ -735,3 +742,13 @@ mmsegmentation
|
||||
| │ │ │ │ ├──sem_seg_train.json
|
||||
| │ │ │ │ └──sem_seg_val.json
|
||||
```
|
||||
|
||||
## NYU
|
||||
|
||||
- To access the NYU dataset, you can download it from [this link](https://drive.google.com/file/d/1wC-io-14RCIL4XTUrQLk6lBqU2AexLVp/view?usp=share_link)
|
||||
|
||||
- Once the download is complete, you can utilize the [tools/dataset_converters/nyu.py](/tools/dataset_converters/nyu.py) script to extract and organize the data into the required format. Run the following command in your terminal:
|
||||
|
||||
```bash
|
||||
python tools/dataset_converters/nyu.py nyu.zip
|
||||
```
|
||||
|
@ -198,6 +198,13 @@ mmsegmentation
|
||||
| │ │ │ └── rles
|
||||
| │ │ │ │ ├──sem_seg_train.json
|
||||
| │ │ │ │ └──sem_seg_val.json
|
||||
│ ├── nyu
|
||||
│ │ ├── images
|
||||
│ │ │ ├── train
|
||||
│ │ │ ├── test
|
||||
│ │ ├── annotations
|
||||
│ │ │ ├── train
|
||||
│ │ │ ├── test
|
||||
```
|
||||
|
||||
## 用 MIM 下载数据集
|
||||
@ -731,3 +738,13 @@ mmsegmentation
|
||||
| │ │ │ │ ├──sem_seg_train.json
|
||||
| │ │ │ │ └──sem_seg_val.json
|
||||
```
|
||||
|
||||
## NYU
|
||||
|
||||
- 您可以从 [这个链接](https://drive.google.com/file/d/1wC-io-14RCIL4XTUrQLk6lBqU2AexLVp/view?usp=share_link) 下载 NYU 数据集
|
||||
|
||||
- 下载完成后,您可以使用 [tools/dataset_converters/nyu.py](/tools/dataset_converters/nyu.py) 脚本来解压和组织数据到所需的格式
|
||||
|
||||
```bash
|
||||
python tools/dataset_converters/nyu.py nyu.zip
|
||||
```
|
||||
|
@ -19,6 +19,7 @@ from .lip import LIPDataset
|
||||
from .loveda import LoveDADataset
|
||||
from .mapillary import MapillaryDataset_v1, MapillaryDataset_v2
|
||||
from .night_driving import NightDrivingDataset
|
||||
from .nyu import NYUDataset
|
||||
from .pascal_context import PascalContextDataset, PascalContextDataset59
|
||||
from .potsdam import PotsdamDataset
|
||||
from .refuge import REFUGEDataset
|
||||
@ -58,5 +59,6 @@ __all__ = [
|
||||
'SynapseDataset', 'REFUGEDataset', 'MapillaryDataset_v1',
|
||||
'MapillaryDataset_v2', 'Albu', 'LEVIRCDDataset',
|
||||
'LoadMultipleRSImageFromFile', 'LoadSingleRSImageFromFile',
|
||||
'ConcatCDInput', 'BaseCDDataset', 'DSDLSegDataset', 'BDD100KDataset'
|
||||
'ConcatCDInput', 'BaseCDDataset', 'DSDLSegDataset', 'BDD100KDataset',
|
||||
'NYUDataset'
|
||||
]
|
||||
|
123
mmseg/datasets/nyu.py
Normal file
123
mmseg/datasets/nyu.py
Normal file
@ -0,0 +1,123 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import os.path as osp
|
||||
from typing import List
|
||||
|
||||
import mmengine.fileio as fileio
|
||||
|
||||
from mmseg.registry import DATASETS
|
||||
from .basesegdataset import BaseSegDataset
|
||||
|
||||
|
||||
@DATASETS.register_module()
|
||||
class NYUDataset(BaseSegDataset):
|
||||
"""NYU depth estimation dataset. The file structure should be.
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
├── data
|
||||
│ ├── nyu
|
||||
│ │ ├── images
|
||||
│ │ │ ├── train
|
||||
│ │ │ │ ├── scene_xxx.jpg
|
||||
│ │ │ │ ├── ...
|
||||
│ │ │ ├── test
|
||||
│ │ ├── annotations
|
||||
│ │ │ ├── train
|
||||
│ │ │ │ ├── scene_xxx.png
|
||||
│ │ │ │ ├── ...
|
||||
│ │ │ ├── test
|
||||
|
||||
Args:
|
||||
ann_file (str): Annotation file path. Defaults to ''.
|
||||
metainfo (dict, optional): Meta information for dataset, such as
|
||||
specify classes to load. Defaults to None.
|
||||
data_root (str, optional): The root directory for ``data_prefix`` and
|
||||
``ann_file``. Defaults to None.
|
||||
data_prefix (dict, optional): Prefix for training data. Defaults to
|
||||
dict(img_path='images', depth_map_path='annotations').
|
||||
img_suffix (str): Suffix of images. Default: '.jpg'
|
||||
seg_map_suffix (str): Suffix of segmentation maps. Default: '.png'
|
||||
filter_cfg (dict, optional): Config for filter data. Defaults to None.
|
||||
indices (int or Sequence[int], optional): Support using first few
|
||||
data in annotation file to facilitate training/testing on a smaller
|
||||
dataset. Defaults to None which means using all ``data_infos``.
|
||||
serialize_data (bool, optional): Whether to hold memory using
|
||||
serialized objects, when enabled, data loader workers can use
|
||||
shared RAM from master process instead of making a copy. Defaults
|
||||
to True.
|
||||
pipeline (list, optional): Processing pipeline. Defaults to [].
|
||||
test_mode (bool, optional): ``test_mode=True`` means in test phase.
|
||||
Defaults to False.
|
||||
lazy_init (bool, optional): Whether to load annotation during
|
||||
instantiation. In some cases, such as visualization, only the meta
|
||||
information of the dataset is needed, which is not necessary to
|
||||
load annotation file. ``Basedataset`` can skip load annotations to
|
||||
save time by set ``lazy_init=True``. Defaults to False.
|
||||
max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
|
||||
None img. The maximum extra number of cycles to get a valid
|
||||
image. Defaults to 1000.
|
||||
ignore_index (int): The label index to be ignored. Default: 255
|
||||
reduce_zero_label (bool): Whether to mark label zero as ignored.
|
||||
Default to False.
|
||||
backend_args (dict, Optional): Arguments to instantiate a file backend.
|
||||
See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
|
||||
for details. Defaults to None.
|
||||
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
|
||||
"""
|
||||
METAINFO = dict(
|
||||
classes=('printer_room', 'bathroom', 'living_room', 'study',
|
||||
'conference_room', 'study_room', 'kitchen', 'home_office',
|
||||
'bedroom', 'dinette', 'playroom', 'indoor_balcony',
|
||||
'laundry_room', 'basement', 'excercise_room', 'foyer',
|
||||
'home_storage', 'cafe', 'furniture_store', 'office_kitchen',
|
||||
'student_lounge', 'dining_room', 'reception_room',
|
||||
'computer_lab', 'classroom', 'office', 'bookstore'))
|
||||
|
||||
def __init__(self,
|
||||
data_prefix=dict(
|
||||
img_path='images', depth_map_path='annotations'),
|
||||
img_suffix='.jpg',
|
||||
depth_map_suffix='.png',
|
||||
**kwargs) -> None:
|
||||
super().__init__(
|
||||
data_prefix=data_prefix,
|
||||
img_suffix=img_suffix,
|
||||
seg_map_suffix=depth_map_suffix,
|
||||
**kwargs)
|
||||
|
||||
def _get_category_id_from_filename(self, image_fname: str) -> int:
|
||||
"""Retrieve the category ID from the given image filename."""
|
||||
image_fname = osp.basename(image_fname)
|
||||
position = image_fname.find(next(filter(str.isdigit, image_fname)), 0)
|
||||
categoty_name = image_fname[:position - 1]
|
||||
if categoty_name not in self._metainfo['classes']:
|
||||
return -1
|
||||
else:
|
||||
return self._metainfo['classes'].index(categoty_name)
|
||||
|
||||
def load_data_list(self) -> List[dict]:
|
||||
"""Load annotation from directory or annotation file.
|
||||
|
||||
Returns:
|
||||
list[dict]: All data info of dataset.
|
||||
"""
|
||||
data_list = []
|
||||
img_dir = self.data_prefix.get('img_path', None)
|
||||
ann_dir = self.data_prefix.get('depth_map_path', None)
|
||||
|
||||
_suffix_len = len(self.img_suffix)
|
||||
for img in fileio.list_dir_or_file(
|
||||
dir_path=img_dir,
|
||||
list_dir=False,
|
||||
suffix=self.img_suffix,
|
||||
recursive=True,
|
||||
backend_args=self.backend_args):
|
||||
data_info = dict(img_path=osp.join(img_dir, img))
|
||||
if ann_dir is not None:
|
||||
depth_map = img[:-_suffix_len] + self.seg_map_suffix
|
||||
data_info['depth_map_path'] = osp.join(ann_dir, depth_map)
|
||||
data_info['seg_fields'] = []
|
||||
data_info['category_id'] = self._get_category_id_from_filename(img)
|
||||
data_list.append(data_info)
|
||||
data_list = sorted(data_list, key=lambda x: x['img_path'])
|
||||
return data_list
|
@ -2,8 +2,8 @@
|
||||
from .formatting import PackSegInputs
|
||||
from .loading import (LoadAnnotations, LoadBiomedicalAnnotation,
|
||||
LoadBiomedicalData, LoadBiomedicalImageFromFile,
|
||||
LoadImageFromNDArray, LoadMultipleRSImageFromFile,
|
||||
LoadSingleRSImageFromFile)
|
||||
LoadDepthAnnotation, LoadImageFromNDArray,
|
||||
LoadMultipleRSImageFromFile, LoadSingleRSImageFromFile)
|
||||
# yapf: disable
|
||||
from .transforms import (CLAHE, AdjustGamma, Albu, BioMedical3DPad,
|
||||
BioMedical3DRandomCrop, BioMedical3DRandomFlip,
|
||||
@ -24,5 +24,5 @@ __all__ = [
|
||||
'ResizeShortestEdge', 'BioMedicalGaussianNoise', 'BioMedicalGaussianBlur',
|
||||
'BioMedical3DRandomFlip', 'BioMedicalRandomGamma', 'BioMedical3DPad',
|
||||
'RandomRotFlip', 'Albu', 'LoadSingleRSImageFromFile', 'ConcatCDInput',
|
||||
'LoadMultipleRSImageFromFile'
|
||||
'LoadMultipleRSImageFromFile', 'LoadDepthAnnotation'
|
||||
]
|
||||
|
@ -92,6 +92,11 @@ class PackSegInputs(BaseTransform):
|
||||
...].astype(np.int64)))
|
||||
data_sample.set_data(dict(gt_edge_map=PixelData(**gt_edge_data)))
|
||||
|
||||
if 'gt_depth_map' in results:
|
||||
gt_depth_data = dict(
|
||||
data=to_tensor(results['gt_depth_map'][None, ...]))
|
||||
data_sample.set_data(dict(gt_depth_map=PixelData(**gt_depth_data)))
|
||||
|
||||
img_meta = {}
|
||||
for key in self.meta_keys:
|
||||
if key in results:
|
||||
|
@ -625,3 +625,77 @@ class LoadMultipleRSImageFromFile(BaseTransform):
|
||||
repr_str = (f'{self.__class__.__name__}('
|
||||
f'to_float32={self.to_float32})')
|
||||
return repr_str
|
||||
|
||||
|
||||
@TRANSFORMS.register_module()
|
||||
class LoadDepthAnnotation(BaseTransform):
|
||||
"""Load ``depth_map`` annotation provided by depth estimation dataset.
|
||||
|
||||
The annotation format is as the following:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
{
|
||||
'gt_depth_map': np.ndarray [Y, X]
|
||||
}
|
||||
|
||||
Required Keys:
|
||||
|
||||
- seg_depth_path
|
||||
|
||||
Added Keys:
|
||||
|
||||
- gt_depth_map (np.ndarray): Depth map with shape (Y, X) by
|
||||
default, and data type is float32 if set to_float32 = True.
|
||||
|
||||
Args:
|
||||
decode_backend (str): The data decoding backend type. Options are
|
||||
'numpy', 'nifti', and 'cv2'. Defaults to 'cv2'.
|
||||
to_float32 (bool): Whether to convert the loaded depth map to a float32
|
||||
numpy array. If set to False, the loaded image is an uint16 array.
|
||||
Defaults to True.
|
||||
depth_rescale_factor (float): Factor to rescale the depth value to
|
||||
limit the range. Defaults to 1.0.
|
||||
backend_args (dict, Optional): Arguments to instantiate a file backend.
|
||||
See :class:`mmengine.fileio` for details.
|
||||
Defaults to None.
|
||||
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
decode_backend: str = 'cv2',
|
||||
to_float32: bool = True,
|
||||
depth_rescale_factor: float = 1.0,
|
||||
backend_args: Optional[dict] = None) -> None:
|
||||
super().__init__()
|
||||
self.decode_backend = decode_backend
|
||||
self.to_float32 = to_float32
|
||||
self.depth_rescale_factor = depth_rescale_factor
|
||||
self.backend_args = backend_args.copy() if backend_args else None
|
||||
|
||||
def transform(self, results: Dict) -> Dict:
|
||||
"""Functions to load depth map.
|
||||
|
||||
Args:
|
||||
results (dict): Result dict from :obj:``mmcv.BaseDataset``.
|
||||
|
||||
Returns:
|
||||
dict: The dict contains loaded depth map.
|
||||
"""
|
||||
data_bytes = fileio.get(results['depth_map_path'], self.backend_args)
|
||||
gt_depth_map = datafrombytes(data_bytes, backend=self.decode_backend)
|
||||
|
||||
if self.to_float32:
|
||||
gt_depth_map = gt_depth_map.astype(np.float32)
|
||||
|
||||
gt_depth_map *= self.depth_rescale_factor
|
||||
results['gt_depth_map'] = gt_depth_map
|
||||
results['seg_fields'].append('gt_depth_map')
|
||||
return results
|
||||
|
||||
def __repr__(self):
|
||||
repr_str = (f'{self.__class__.__name__}('
|
||||
f"decode_backend='{self.decode_backend}', "
|
||||
f'to_float32={self.to_float32}, '
|
||||
f'backend_args={self.backend_args})')
|
||||
return repr_str
|
||||
|
@ -3,6 +3,7 @@ import gzip
|
||||
import io
|
||||
import pickle
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
@ -12,7 +13,7 @@ def datafrombytes(content: bytes, backend: str = 'numpy') -> np.ndarray:
|
||||
Args:
|
||||
content (bytes): The data bytes got from files or other streams.
|
||||
backend (str): The data decoding backend type. Options are 'numpy',
|
||||
'nifti' and 'pickle'. Defaults to 'numpy'.
|
||||
'nifti', 'cv2' and 'pickle'. Defaults to 'numpy'.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray: Loaded data array.
|
||||
@ -33,6 +34,9 @@ def datafrombytes(content: bytes, backend: str = 'numpy') -> np.ndarray:
|
||||
data = Nifti1Image.from_bytes(data.to_bytes()).get_fdata()
|
||||
elif backend == 'numpy':
|
||||
data = np.load(f)
|
||||
elif backend == 'cv2':
|
||||
data = np.frombuffer(f.read(), dtype=np.uint16)
|
||||
data = cv2.imdecode(data, 2)
|
||||
else:
|
||||
raise ValueError
|
||||
return data
|
||||
|
Binary file not shown.
After Width: | Height: | Size: 9.4 KiB |
BIN
tests/data/pseudo_nyu_dataset/images/bookstore_0001d_00001.jpg
Normal file
BIN
tests/data/pseudo_nyu_dataset/images/bookstore_0001d_00001.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 10 KiB |
@ -9,7 +9,7 @@ from mmseg.datasets import (ADE20KDataset, BaseSegDataset, BDD100KDataset,
|
||||
CityscapesDataset, COCOStuffDataset,
|
||||
DecathlonDataset, DSDLSegDataset, ISPRSDataset,
|
||||
LIPDataset, LoveDADataset, MapillaryDataset_v1,
|
||||
MapillaryDataset_v2, PascalVOCDataset,
|
||||
MapillaryDataset_v2, NYUDataset, PascalVOCDataset,
|
||||
PotsdamDataset, REFUGEDataset, SynapseDataset,
|
||||
iSAIDDataset)
|
||||
from mmseg.registry import DATASETS
|
||||
@ -462,3 +462,14 @@ def test_dsdlseg_dataset():
|
||||
assert len(dataset.metainfo['classes']) == 21
|
||||
else:
|
||||
ImportWarning('Package `dsdl` is not installed.')
|
||||
|
||||
|
||||
def test_nyu_dataset():
|
||||
dataset = NYUDataset(
|
||||
data_root='tests/data/pseudo_nyu_dataset',
|
||||
data_prefix=dict(img_path='images', depth_map_path='annotations'),
|
||||
)
|
||||
assert len(dataset) == 1
|
||||
data = dataset[0]
|
||||
assert data.get('depth_map_path', None) is not None
|
||||
assert data.get('category_id', -1) == 26
|
||||
|
@ -7,10 +7,11 @@ import mmcv
|
||||
import numpy as np
|
||||
from mmcv.transforms import LoadImageFromFile
|
||||
|
||||
from mmseg.datasets.transforms import (LoadAnnotations,
|
||||
LoadBiomedicalAnnotation,
|
||||
from mmseg.datasets.transforms import LoadAnnotations # noqa
|
||||
from mmseg.datasets.transforms import (LoadBiomedicalAnnotation,
|
||||
LoadBiomedicalData,
|
||||
LoadBiomedicalImageFromFile,
|
||||
LoadDepthAnnotation,
|
||||
LoadImageFromNDArray)
|
||||
|
||||
|
||||
@ -276,3 +277,19 @@ class TestLoading:
|
||||
"decode_backend='numpy', "
|
||||
'to_xyz=False, '
|
||||
'backend_args=None)')
|
||||
|
||||
def test_load_depth_annotation(self):
|
||||
input_results = dict(
|
||||
img_path='tests/data/pseudo_nyu_dataset/images/'
|
||||
'bookstore_0001d_00001.jpg',
|
||||
depth_map_path='tests/data/pseudo_nyu_dataset/'
|
||||
'annotations/bookstore_0001d_00001.png',
|
||||
category_id=-1,
|
||||
seg_fields=[])
|
||||
transform = LoadDepthAnnotation(depth_rescale_factor=0.001)
|
||||
results = transform(input_results)
|
||||
assert 'gt_depth_map' in results
|
||||
assert results['gt_depth_map'].shape[:2] == mmcv.imread(
|
||||
input_results['depth_map_path']).shape[:2]
|
||||
assert results['gt_depth_map'].dtype == np.float32
|
||||
assert 'gt_depth_map' in results['seg_fields']
|
||||
|
89
tools/dataset_converters/nyu.py
Normal file
89
tools/dataset_converters/nyu.py
Normal file
@ -0,0 +1,89 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import os.path as osp
|
||||
import shutil
|
||||
import tempfile
|
||||
import zipfile
|
||||
|
||||
from mmengine.utils import mkdir_or_exist
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Convert NYU Depth dataset to mmsegmentation format')
|
||||
parser.add_argument('raw_data', help='the path of raw data')
|
||||
parser.add_argument(
|
||||
'-o', '--out_dir', help='output path', default='./data/nyu')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def reorganize(raw_data_dir: str, out_dir: str):
|
||||
"""Reorganize NYU Depth dataset files into the required directory
|
||||
structure.
|
||||
|
||||
Args:
|
||||
raw_data_dir (str): Path to the raw data directory.
|
||||
out_dir (str): Output directory for the organized dataset.
|
||||
"""
|
||||
|
||||
def move_data(data_list, dst_prefix, fname_func):
|
||||
"""Move data files from source to destination directory.
|
||||
|
||||
Args:
|
||||
data_list (list): List of data file paths.
|
||||
dst_prefix (str): Prefix to be added to destination paths.
|
||||
fname_func (callable): Function to process file names
|
||||
"""
|
||||
for data_item in data_list:
|
||||
data_item = data_item.strip().strip('/')
|
||||
new_item = fname_func(data_item)
|
||||
shutil.move(
|
||||
osp.join(raw_data_dir, data_item),
|
||||
osp.join(out_dir, dst_prefix, new_item))
|
||||
|
||||
def process_phase(phase):
|
||||
"""Process a dataset phase (e.g., 'train' or 'test')."""
|
||||
with open(osp.join(raw_data_dir, f'nyu_{phase}.txt')) as f:
|
||||
data = filter(lambda x: len(x.strip()) > 0, f.readlines())
|
||||
data = map(lambda x: x.split()[:2], data)
|
||||
images, annos = zip(*data)
|
||||
|
||||
move_data(images, f'images/{phase}',
|
||||
lambda x: x.replace('/rgb', ''))
|
||||
move_data(annos, f'annotations/{phase}',
|
||||
lambda x: x.replace('/sync_depth', ''))
|
||||
|
||||
process_phase('train')
|
||||
process_phase('test')
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
print('Making directories...')
|
||||
mkdir_or_exist(args.out_dir)
|
||||
for subdir in [
|
||||
'images/train', 'images/test', 'annotations/train',
|
||||
'annotations/test'
|
||||
]:
|
||||
mkdir_or_exist(osp.join(args.out_dir, subdir))
|
||||
|
||||
print('Generating images and annotations...')
|
||||
|
||||
if args.raw_data.endswith('.zip'):
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
zip_file = zipfile.ZipFile(args.raw_data)
|
||||
zip_file.extractall(tmp_dir)
|
||||
reorganize(osp.join(tmp_dir, 'nyu'), args.out_dir)
|
||||
else:
|
||||
assert osp.isdir(
|
||||
args.raw_data
|
||||
), 'the argument --raw-data should be either a zip file or directory.'
|
||||
reorganize(args.raw_data, args.out_dir)
|
||||
|
||||
print('Done!')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user