[Feature] Add Cutout transform (#1022)

* Fix typo in usage example

* [Feature] Add CutOut transform

* CutOut repr covered by unittests

* Cutout ignore index, test

* ignore_index -> seg_fill_in, defualt is None

* seg_fill_in is added to repr

* test is modified for seg_fill_in is None

* seg_fill_in (int), 0-255

* add seg_fill_in test

* doc string for seg_fill_in

* rename CutOut to RandomCutOut, add prob

* Add unittest when cutout is False
pull/1095/head
Kyungmin Lee 2021-11-30 21:37:06 +09:00 committed by GitHub
parent 08272b6208
commit 78a6ff689d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 213 additions and 3 deletions

View File

@ -5,13 +5,14 @@ from .formatting import (Collect, ImageToTensor, ToDataContainer, ToTensor,
from .loading import LoadAnnotations, LoadImageFromFile from .loading import LoadAnnotations, LoadImageFromFile
from .test_time_aug import MultiScaleFlipAug from .test_time_aug import MultiScaleFlipAug
from .transforms import (CLAHE, AdjustGamma, Normalize, Pad, from .transforms import (CLAHE, AdjustGamma, Normalize, Pad,
PhotoMetricDistortion, RandomCrop, RandomFlip, PhotoMetricDistortion, RandomCrop, RandomCutOut,
RandomRotate, Rerange, Resize, RGB2Gray, SegRescale) RandomFlip, RandomRotate, Rerange, Resize, RGB2Gray,
SegRescale)
__all__ = [ __all__ = [
'Compose', 'to_tensor', 'ToTensor', 'ImageToTensor', 'ToDataContainer', 'Compose', 'to_tensor', 'ToTensor', 'ImageToTensor', 'ToDataContainer',
'Transpose', 'Collect', 'LoadAnnotations', 'LoadImageFromFile', 'Transpose', 'Collect', 'LoadAnnotations', 'LoadImageFromFile',
'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'Pad', 'RandomCrop', 'MultiScaleFlipAug', 'Resize', 'RandomFlip', 'Pad', 'RandomCrop',
'Normalize', 'SegRescale', 'PhotoMetricDistortion', 'RandomRotate', 'Normalize', 'SegRescale', 'PhotoMetricDistortion', 'RandomRotate',
'AdjustGamma', 'CLAHE', 'Rerange', 'RGB2Gray' 'AdjustGamma', 'CLAHE', 'Rerange', 'RGB2Gray', 'RandomCutOut'
] ]

View File

@ -948,3 +948,95 @@ class PhotoMetricDistortion(object):
f'{self.saturation_upper}), ' f'{self.saturation_upper}), '
f'hue_delta={self.hue_delta})') f'hue_delta={self.hue_delta})')
return repr_str return repr_str
@PIPELINES.register_module()
class RandomCutOut(object):
"""CutOut operation.
Randomly drop some regions of image used in
`Cutout <https://arxiv.org/abs/1708.04552>`_.
Args:
prob (float): cutout probability.
n_holes (int | tuple[int, int]): Number of regions to be dropped.
If it is given as a list, number of holes will be randomly
selected from the closed interval [`n_holes[0]`, `n_holes[1]`].
cutout_shape (tuple[int, int] | list[tuple[int, int]]): The candidate
shape of dropped regions. It can be `tuple[int, int]` to use a
fixed cutout shape, or `list[tuple[int, int]]` to randomly choose
shape from the list.
cutout_ratio (tuple[float, float] | list[tuple[float, float]]): The
candidate ratio of dropped regions. It can be `tuple[float, float]`
to use a fixed ratio or `list[tuple[float, float]]` to randomly
choose ratio from the list. Please note that `cutout_shape`
and `cutout_ratio` cannot be both given at the same time.
fill_in (tuple[float, float, float] | tuple[int, int, int]): The value
of pixel to fill in the dropped regions. Default: (0, 0, 0).
seg_fill_in (int): The labels of pixel to fill in the dropped regions.
If seg_fill_in is None, skip. Default: None.
"""
def __init__(self,
prob,
n_holes,
cutout_shape=None,
cutout_ratio=None,
fill_in=(0, 0, 0),
seg_fill_in=None):
assert 0 <= prob and prob <= 1
assert (cutout_shape is None) ^ (cutout_ratio is None), \
'Either cutout_shape or cutout_ratio should be specified.'
assert (isinstance(cutout_shape, (list, tuple))
or isinstance(cutout_ratio, (list, tuple)))
if isinstance(n_holes, tuple):
assert len(n_holes) == 2 and 0 <= n_holes[0] < n_holes[1]
else:
n_holes = (n_holes, n_holes)
if seg_fill_in is not None:
assert (isinstance(seg_fill_in, int) and 0 <= seg_fill_in
and seg_fill_in <= 255)
self.prob = prob
self.n_holes = n_holes
self.fill_in = fill_in
self.seg_fill_in = seg_fill_in
self.with_ratio = cutout_ratio is not None
self.candidates = cutout_ratio if self.with_ratio else cutout_shape
if not isinstance(self.candidates, list):
self.candidates = [self.candidates]
def __call__(self, results):
"""Call function to drop some regions of image."""
cutout = True if np.random.rand() < self.prob else False
if cutout:
h, w, c = results['img'].shape
n_holes = np.random.randint(self.n_holes[0], self.n_holes[1] + 1)
for _ in range(n_holes):
x1 = np.random.randint(0, w)
y1 = np.random.randint(0, h)
index = np.random.randint(0, len(self.candidates))
if not self.with_ratio:
cutout_w, cutout_h = self.candidates[index]
else:
cutout_w = int(self.candidates[index][0] * w)
cutout_h = int(self.candidates[index][1] * h)
x2 = np.clip(x1 + cutout_w, 0, w)
y2 = np.clip(y1 + cutout_h, 0, h)
results['img'][y1:y2, x1:x2, :] = self.fill_in
if self.seg_fill_in is not None:
for key in results.get('seg_fields', []):
results[key][y1:y2, x1:x2] = self.seg_fill_in
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(prob={self.prob}, '
repr_str += f'n_holes={self.n_holes}, '
repr_str += (f'cutout_ratio={self.candidates}, ' if self.with_ratio
else f'cutout_shape={self.candidates}, ')
repr_str += f'fill_in={self.fill_in}, '
repr_str += f'seg_fill_in={self.seg_fill_in})'
return repr_str

View File

@ -497,3 +497,120 @@ def test_seg_rescale():
rescale_module = build_from_cfg(transform, PIPELINES) rescale_module = build_from_cfg(transform, PIPELINES)
rescale_results = rescale_module(results.copy()) rescale_results = rescale_module(results.copy())
assert rescale_results['gt_semantic_seg'].shape == (h, w) assert rescale_results['gt_semantic_seg'].shape == (h, w)
def test_cutout():
# test prob
with pytest.raises(AssertionError):
transform = dict(type='RandomCutOut', prob=1.5, n_holes=1)
build_from_cfg(transform, PIPELINES)
# test n_holes
with pytest.raises(AssertionError):
transform = dict(
type='RandomCutOut', prob=0.5, n_holes=(5, 3), cutout_shape=(8, 8))
build_from_cfg(transform, PIPELINES)
with pytest.raises(AssertionError):
transform = dict(
type='RandomCutOut',
prob=0.5,
n_holes=(3, 4, 5),
cutout_shape=(8, 8))
build_from_cfg(transform, PIPELINES)
# test cutout_shape and cutout_ratio
with pytest.raises(AssertionError):
transform = dict(
type='RandomCutOut', prob=0.5, n_holes=1, cutout_shape=8)
build_from_cfg(transform, PIPELINES)
with pytest.raises(AssertionError):
transform = dict(
type='RandomCutOut', prob=0.5, n_holes=1, cutout_ratio=0.2)
build_from_cfg(transform, PIPELINES)
# either of cutout_shape and cutout_ratio should be given
with pytest.raises(AssertionError):
transform = dict(type='RandomCutOut', prob=0.5, n_holes=1)
build_from_cfg(transform, PIPELINES)
with pytest.raises(AssertionError):
transform = dict(
type='RandomCutOut',
prob=0.5,
n_holes=1,
cutout_shape=(2, 2),
cutout_ratio=(0.4, 0.4))
build_from_cfg(transform, PIPELINES)
# test seg_fill_in
with pytest.raises(AssertionError):
transform = dict(
type='RandomCutOut',
prob=0.5,
n_holes=1,
cutout_shape=(8, 8),
seg_fill_in='a')
build_from_cfg(transform, PIPELINES)
with pytest.raises(AssertionError):
transform = dict(
type='RandomCutOut',
prob=0.5,
n_holes=1,
cutout_shape=(8, 8),
seg_fill_in=256)
build_from_cfg(transform, PIPELINES)
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../data/color.jpg'), 'color')
seg = np.array(
Image.open(osp.join(osp.dirname(__file__), '../data/seg.png')))
results['img'] = img
results['gt_semantic_seg'] = seg
results['seg_fields'] = ['gt_semantic_seg']
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
results['pad_shape'] = img.shape
results['img_fields'] = ['img']
transform = dict(
type='RandomCutOut', prob=1, n_holes=1, cutout_shape=(10, 10))
cutout_module = build_from_cfg(transform, PIPELINES)
assert 'cutout_shape' in repr(cutout_module)
cutout_result = cutout_module(copy.deepcopy(results))
assert cutout_result['img'].sum() < img.sum()
transform = dict(
type='RandomCutOut', prob=1, n_holes=1, cutout_ratio=(0.8, 0.8))
cutout_module = build_from_cfg(transform, PIPELINES)
assert 'cutout_ratio' in repr(cutout_module)
cutout_result = cutout_module(copy.deepcopy(results))
assert cutout_result['img'].sum() < img.sum()
transform = dict(
type='RandomCutOut', prob=0, n_holes=1, cutout_ratio=(0.8, 0.8))
cutout_module = build_from_cfg(transform, PIPELINES)
cutout_result = cutout_module(copy.deepcopy(results))
assert cutout_result['img'].sum() == img.sum()
assert cutout_result['gt_semantic_seg'].sum() == seg.sum()
transform = dict(
type='RandomCutOut',
prob=1,
n_holes=(2, 4),
cutout_shape=[(10, 10), (15, 15)],
fill_in=(255, 255, 255),
seg_fill_in=None)
cutout_module = build_from_cfg(transform, PIPELINES)
cutout_result = cutout_module(copy.deepcopy(results))
assert cutout_result['img'].sum() > img.sum()
assert cutout_result['gt_semantic_seg'].sum() == seg.sum()
transform = dict(
type='RandomCutOut',
prob=1,
n_holes=1,
cutout_ratio=(0.8, 0.8),
fill_in=(255, 255, 255),
seg_fill_in=255)
cutout_module = build_from_cfg(transform, PIPELINES)
cutout_result = cutout_module(copy.deepcopy(results))
assert cutout_result['img'].sum() > img.sum()
assert cutout_result['gt_semantic_seg'].sum() > seg.sum()