mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
bumpv1.0.0 (#2849)
This commit is contained in:
parent
580887ad10
commit
892f9e19e7
@ -88,11 +88,12 @@ MMSegmentation v1.x brings remarkable improvements over the 0.x release, offerin
|
||||
|
||||
## What's New
|
||||
|
||||
v1.0.0rc6 was released on 03/03/2023.
|
||||
v1.0.0 was released on 04/06/2023.
|
||||
Please refer to [changelog.md](docs/en/notes/changelog.md) for details and release history.
|
||||
|
||||
- Support MMSegInferencer ([#2413](https://github.com/open-mmlab/mmsegmentation/pull/2413), [#2658](https://github.com/open-mmlab/mmsegmentation/pull/2658))
|
||||
- Support REFUGE dataset ([#2554](https://github.com/open-mmlab/mmsegmentation/pull/2554))
|
||||
- Add Mapillary Vistas Datasets support to MMSegmentation Core Package ([#2576](https://github.com/open-mmlab/mmsegmentation/pull/2576))
|
||||
- Support PIDNet ([#2609](https://github.com/open-mmlab/mmsegmentation/pull/2609))
|
||||
- Support SegNeXt ([#2654](https://github.com/open-mmlab/mmsegmentation/pull/2654))
|
||||
|
||||
## Installation
|
||||
|
||||
|
@ -87,7 +87,7 @@ MMSegmentation v1.x 在 0.x 版本的基础上有了显著的提升,提供了
|
||||
|
||||
## 更新日志
|
||||
|
||||
最新版本 v1.0.0rc6 在 2023.03.03 发布。
|
||||
最新版本 v1.0.0 在 2023.04.06 发布。
|
||||
如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/en/notes/changelog.md)。
|
||||
|
||||
## 安装
|
||||
|
@ -1,7 +1,7 @@
|
||||
ARG PYTORCH="1.11.0"
|
||||
ARG CUDA="11.3"
|
||||
ARG CUDNN="8"
|
||||
ARG MMCV="2.0.0rc4"
|
||||
ARG MMCV="2.0.0"
|
||||
|
||||
FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
|
||||
|
||||
|
@ -3,8 +3,8 @@ ARG CUDA="11.3"
|
||||
ARG CUDNN="8"
|
||||
FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
|
||||
|
||||
ARG MMCV="2.0.0rc4"
|
||||
ARG MMSEG="1.0.0rc6"
|
||||
ARG MMCV="2.0.0"
|
||||
ARG MMSEG="1.0.0"
|
||||
|
||||
ENV PYTHONUNBUFFERED TRUE
|
||||
|
||||
|
@ -1,5 +1,41 @@
|
||||
# Changelog of v1.x
|
||||
|
||||
## v1.0.0(04/06/2023)
|
||||
|
||||
### Highlights
|
||||
|
||||
- Add Mapillary Vistas Datasets support to MMSegmentation Core Package ([#2576](https://github.com/open-mmlab/mmsegmentation/pull/2576))
|
||||
- Support PIDNet ([#2609](https://github.com/open-mmlab/mmsegmentation/pull/2609))
|
||||
- Support SegNeXt ([#2654](https://github.com/open-mmlab/mmsegmentation/pull/2654))
|
||||
|
||||
### Features
|
||||
|
||||
- Support calculating FLOPs of segmentors ([#2706](https://github.com/open-mmlab/mmsegmentation/pull/2706))
|
||||
- Support multi-band image for Mosaic ([#2748](https://github.com/open-mmlab/mmsegmentation/pull/2748))
|
||||
- Support dump segment prediction ([#2712](https://github.com/open-mmlab/mmsegmentation/pull/2712))
|
||||
|
||||
### Bug fix
|
||||
|
||||
- Fix format_result and fix prefix param in cityscape metric, and rename CitysMetric to CityscapesMetric ([#2660](https://github.com/open-mmlab/mmsegmentation/pull/2660))
|
||||
- Support input gt seg map is not 2D ([#2739](https://github.com/open-mmlab/mmsegmentation/pull/2739))
|
||||
- Fix accepting an unexpected argument `local-rank` in PyTorch 2.0 ([#2812](https://github.com/open-mmlab/mmsegmentation/pull/2812))
|
||||
|
||||
### Documentation
|
||||
|
||||
- Add Chinese version of various documentation ([#2673](https://github.com/open-mmlab/mmsegmentation/pull/2673), [#2702](https://github.com/open-mmlab/mmsegmentation/pull/2702), [#2703](https://github.com/open-mmlab/mmsegmentation/pull/2703), [#2701](https://github.com/open-mmlab/mmsegmentation/pull/2701), [#2722](https://github.com/open-mmlab/mmsegmentation/pull/2722), [#2733](https://github.com/open-mmlab/mmsegmentation/pull/2733), [#2769](https://github.com/open-mmlab/mmsegmentation/pull/2769), [#2790](https://github.com/open-mmlab/mmsegmentation/pull/2790), [#2798](https://github.com/open-mmlab/mmsegmentation/pull/2798))
|
||||
- Update and refine various English documentation ([#2715](https://github.com/open-mmlab/mmsegmentation/pull/2715), [#2755](https://github.com/open-mmlab/mmsegmentation/pull/2755), [#2745](https://github.com/open-mmlab/mmsegmentation/pull/2745), [#2797](https://github.com/open-mmlab/mmsegmentation/pull/2797), [#2799](https://github.com/open-mmlab/mmsegmentation/pull/2799), [#2821](https://github.com/open-mmlab/mmsegmentation/pull/2821), [#2827](https://github.com/open-mmlab/mmsegmentation/pull/2827), [#2831](https://github.com/open-mmlab/mmsegmentation/pull/2831))
|
||||
- Add deeplabv3 model structure documentation ([#2426](https://github.com/open-mmlab/mmsegmentation/pull/2426))
|
||||
- Add custom metrics documentation ([#2799](https://github.com/open-mmlab/mmsegmentation/pull/2799))
|
||||
- Add faq in dev-1.x branch ([#2765](https://github.com/open-mmlab/mmsegmentation/pull/2765))
|
||||
|
||||
### New Contributors
|
||||
|
||||
- @liuruiqiang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2554
|
||||
- @wangjiangben-hw made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2569
|
||||
- @jinxianwei made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2557
|
||||
- @KKIEEK made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2747
|
||||
- @Renzhihan made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2765
|
||||
|
||||
## v1.0.0rc6(03/03/2023)
|
||||
|
||||
### Highlights
|
||||
|
@ -8,13 +8,14 @@ The compatible MMSegmentation, MMCV and MMEngine versions are as below. Please i
|
||||
|
||||
| MMSegmentation version | MMCV version | MMEngine version | MMClassification (optional) version | MMDetection (optional) version |
|
||||
| :--------------------: | :----------------------------: | :---------------: | :---------------------------------: | :----------------------------: |
|
||||
| dev-1.x branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 |
|
||||
| 1.x branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 |
|
||||
| dev-1.x branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 |
|
||||
| main branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 |
|
||||
| 1.0.0 | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 |
|
||||
| 1.0.0rc6 | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 |
|
||||
| 1.0.0rc5 | mmcv >= 2.0.0rc4 | MMEngine >= 0.2.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc6 |
|
||||
| 1.0.0rc4 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4, \<=3.0.0rc5 |
|
||||
| 1.0.0rc3 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4 \<=3.0.0rc5 |
|
||||
| 1.0.0rc2 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4 \<=3.0.0rc5 |
|
||||
| 1.0.0rc3 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4, \<=3.0.0rc5 |
|
||||
| 1.0.0rc2 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4, \<=3.0.0rc5 |
|
||||
| 1.0.0rc1 | mmcv >= 2.0.0rc1, \<=2.0.0rc3> | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | Not required |
|
||||
| 1.0.0rc0 | mmcv >= 2.0.0rc1, \<=2.0.0rc3> | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | Not required |
|
||||
|
||||
@ -61,7 +62,7 @@ But in binary segmentation task, there are two solutions:
|
||||
|
||||
In summary, to implement binary segmentation methods users should modify below parameters in the `decode_head` and `auxiliary_head` configs. Here is a modification example of [pspnet_unet_s5-d16.py](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/_base_/models/pspnet_unet_s5-d16.py):
|
||||
|
||||
- (1) `num_classes=2`, `out_channels=2` and `use_sigmoid=False` in `CrossEntropyLoss`.
|
||||
- (1) `num_classes=2`, `out_channels=2` and `use_sigmoid=False` in `CrossEntropyLoss`.
|
||||
|
||||
```python
|
||||
decode_head=dict(
|
||||
|
@ -8,13 +8,14 @@
|
||||
|
||||
| MMSegmentation version | MMCV version | MMEngine version | MMClassification (optional) version | MMDetection (optional) version |
|
||||
| :--------------------: | :----------------------------: | :---------------: | :---------------------------------: | :----------------------------: |
|
||||
| dev-1.x branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 |
|
||||
| 1.x branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 |
|
||||
| dev-1.x branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 |
|
||||
| main branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 |
|
||||
| 1.0.0 | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 |
|
||||
| 1.0.0rc6 | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 |
|
||||
| 1.0.0rc5 | mmcv >= 2.0.0rc4 | MMEngine >= 0.2.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc6 |
|
||||
| 1.0.0rc4 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4, \<=3.0.0rc5 |
|
||||
| 1.0.0rc3 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4 \<=3.0.0rc5 |
|
||||
| 1.0.0rc2 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4 \<=3.0.0rc5 |
|
||||
| 1.0.0rc3 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4, \<=3.0.0rc5 |
|
||||
| 1.0.0rc2 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4, \<=3.0.0rc5 |
|
||||
| 1.0.0rc1 | mmcv >= 2.0.0rc1, \<=2.0.0rc3> | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | Not required |
|
||||
| 1.0.0rc0 | mmcv >= 2.0.0rc1, \<=2.0.0rc3> | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | Not required |
|
||||
|
||||
@ -112,7 +113,7 @@ if self.reduce_zero_label:
|
||||
|
||||
关于您的数据集是否需要使用 reduce_zero_label,有以下两类情况:
|
||||
|
||||
- 例如在 [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isprs-potsdam) 数据集上,有 0-不透水面、1-建筑、2-低矮植被、3-树、4-汽车、5-杂乱,六类。但该数据集提供了两种RGB标签,一种为图像边缘处有黑色像素的标签,另一种是没有黑色边缘的标签。对于有黑色边缘的标签,在 [dataset_converters.py](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/tools/dataset_converters/potsdam.py)中,其将黑色边缘转换为 label 0,其余标签分别为 1-不透水面、2-建筑、3-低矮植被、4-树、5-汽车、6-杂乱,那么此时,就应该在数据集 [potsdam.py](https://github.com/open-mmlab/mmsegmentation/blob/ff95416c3b5ce8d62b9289f743531398efce534f/mmseg/datasets/potsdam.py#L23) 中将`reduce_zero_label=True`。如果使用的是没有黑色边缘的标签,那么 mask label 中只有 0-5,此时就应该使`reduce_zero_label=False`。需要结合您的实际情况来使用。
|
||||
- 例如在第 0 类为background类别的数据集上,如果您最终是需要将背景和您的其余类别分开时,是不需要使用`reduce_zero_label`的,此时在数据集中应该将其设置为`reduce_zero_label=False`
|
||||
- 例如在 [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isprs-potsdam) 数据集上,有 0-不透水面、1-建筑、2-低矮植被、3-树、4-汽车、5-杂乱,六类。但该数据集提供了两种 RGB 标签,一种为图像边缘处有黑色像素的标签,另一种是没有黑色边缘的标签。对于有黑色边缘的标签,在 [dataset_converters.py](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/tools/dataset_converters/potsdam.py)中,其将黑色边缘转换为 label 0,其余标签分别为 1-不透水面、2-建筑、3-低矮植被、4-树、5-汽车、6-杂乱,那么此时,就应该在数据集 [potsdam.py](https://github.com/open-mmlab/mmsegmentation/blob/ff95416c3b5ce8d62b9289f743531398efce534f/mmseg/datasets/potsdam.py#L23) 中将`reduce_zero_label=True`。如果使用的是没有黑色边缘的标签,那么 mask label 中只有 0-5,此时就应该使`reduce_zero_label=False`。需要结合您的实际情况来使用。
|
||||
- 例如在第 0 类为 background 类别的数据集上,如果您最终是需要将背景和您的其余类别分开时,是不需要使用`reduce_zero_label`的,此时在数据集中应该将其设置为`reduce_zero_label=False`
|
||||
|
||||
**注意:** 使用 `reduce_zero_label` 请确认数据集原始类别个数,如果只有两类,需要关闭 `reduce_zero_label` 即设置 `reduce_zero_label=False`。
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Copyright (c) Open-MMLab. All rights reserved.
|
||||
|
||||
__version__ = '1.0.0rc6'
|
||||
__version__ = '1.0.0'
|
||||
|
||||
|
||||
def parse_version_info(version_str):
|
||||
|
Loading…
x
Reference in New Issue
Block a user