diff --git a/README.md b/README.md index 2436a186d..8486cc2c5 100644 --- a/README.md +++ b/README.md @@ -88,11 +88,12 @@ MMSegmentation v1.x brings remarkable improvements over the 0.x release, offerin ## What's New -v1.0.0rc6 was released on 03/03/2023. +v1.0.0 was released on 04/06/2023. Please refer to [changelog.md](docs/en/notes/changelog.md) for details and release history. -- Support MMSegInferencer ([#2413](https://github.com/open-mmlab/mmsegmentation/pull/2413), [#2658](https://github.com/open-mmlab/mmsegmentation/pull/2658)) -- Support REFUGE dataset ([#2554](https://github.com/open-mmlab/mmsegmentation/pull/2554)) +- Add Mapillary Vistas Datasets support to MMSegmentation Core Package ([#2576](https://github.com/open-mmlab/mmsegmentation/pull/2576)) +- Support PIDNet ([#2609](https://github.com/open-mmlab/mmsegmentation/pull/2609)) +- Support SegNeXt ([#2654](https://github.com/open-mmlab/mmsegmentation/pull/2654)) ## Installation diff --git a/README_zh-CN.md b/README_zh-CN.md index fbd317586..90a6e56ae 100644 --- a/README_zh-CN.md +++ b/README_zh-CN.md @@ -87,7 +87,7 @@ MMSegmentation v1.x 在 0.x 版本的基础上有了显著的提升,提供了 ## 更新日志 -最新版本 v1.0.0rc6 在 2023.03.03 发布。 +最新版本 v1.0.0 在 2023.04.06 发布。 如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/en/notes/changelog.md)。 ## 安装 diff --git a/docker/Dockerfile b/docker/Dockerfile index 982b09bdc..28b9cdae3 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -1,7 +1,7 @@ ARG PYTORCH="1.11.0" ARG CUDA="11.3" ARG CUDNN="8" -ARG MMCV="2.0.0rc4" +ARG MMCV="2.0.0" FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel diff --git a/docker/serve/Dockerfile b/docker/serve/Dockerfile index cf127ddbe..cc61143f6 100644 --- a/docker/serve/Dockerfile +++ b/docker/serve/Dockerfile @@ -3,8 +3,8 @@ ARG CUDA="11.3" ARG CUDNN="8" FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel -ARG MMCV="2.0.0rc4" -ARG MMSEG="1.0.0rc6" +ARG MMCV="2.0.0" +ARG MMSEG="1.0.0" ENV PYTHONUNBUFFERED TRUE diff --git a/docs/en/notes/changelog.md b/docs/en/notes/changelog.md index 518bfb314..729bb8ce1 100644 --- a/docs/en/notes/changelog.md +++ b/docs/en/notes/changelog.md @@ -1,5 +1,41 @@ # Changelog of v1.x +## v1.0.0(04/06/2023) + +### Highlights + +- Add Mapillary Vistas Datasets support to MMSegmentation Core Package ([#2576](https://github.com/open-mmlab/mmsegmentation/pull/2576)) +- Support PIDNet ([#2609](https://github.com/open-mmlab/mmsegmentation/pull/2609)) +- Support SegNeXt ([#2654](https://github.com/open-mmlab/mmsegmentation/pull/2654)) + +### Features + +- Support calculating FLOPs of segmentors ([#2706](https://github.com/open-mmlab/mmsegmentation/pull/2706)) +- Support multi-band image for Mosaic ([#2748](https://github.com/open-mmlab/mmsegmentation/pull/2748)) +- Support dump segment prediction ([#2712](https://github.com/open-mmlab/mmsegmentation/pull/2712)) + +### Bug fix + +- Fix format_result and fix prefix param in cityscape metric, and rename CitysMetric to CityscapesMetric ([#2660](https://github.com/open-mmlab/mmsegmentation/pull/2660)) +- Support input gt seg map is not 2D ([#2739](https://github.com/open-mmlab/mmsegmentation/pull/2739)) +- Fix accepting an unexpected argument `local-rank` in PyTorch 2.0 ([#2812](https://github.com/open-mmlab/mmsegmentation/pull/2812)) + +### Documentation + +- Add Chinese version of various documentation ([#2673](https://github.com/open-mmlab/mmsegmentation/pull/2673), [#2702](https://github.com/open-mmlab/mmsegmentation/pull/2702), [#2703](https://github.com/open-mmlab/mmsegmentation/pull/2703), [#2701](https://github.com/open-mmlab/mmsegmentation/pull/2701), [#2722](https://github.com/open-mmlab/mmsegmentation/pull/2722), [#2733](https://github.com/open-mmlab/mmsegmentation/pull/2733), [#2769](https://github.com/open-mmlab/mmsegmentation/pull/2769), [#2790](https://github.com/open-mmlab/mmsegmentation/pull/2790), [#2798](https://github.com/open-mmlab/mmsegmentation/pull/2798)) +- Update and refine various English documentation ([#2715](https://github.com/open-mmlab/mmsegmentation/pull/2715), [#2755](https://github.com/open-mmlab/mmsegmentation/pull/2755), [#2745](https://github.com/open-mmlab/mmsegmentation/pull/2745), [#2797](https://github.com/open-mmlab/mmsegmentation/pull/2797), [#2799](https://github.com/open-mmlab/mmsegmentation/pull/2799), [#2821](https://github.com/open-mmlab/mmsegmentation/pull/2821), [#2827](https://github.com/open-mmlab/mmsegmentation/pull/2827), [#2831](https://github.com/open-mmlab/mmsegmentation/pull/2831)) +- Add deeplabv3 model structure documentation ([#2426](https://github.com/open-mmlab/mmsegmentation/pull/2426)) +- Add custom metrics documentation ([#2799](https://github.com/open-mmlab/mmsegmentation/pull/2799)) +- Add faq in dev-1.x branch ([#2765](https://github.com/open-mmlab/mmsegmentation/pull/2765)) + +### New Contributors + +- @liuruiqiang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2554 +- @wangjiangben-hw made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2569 +- @jinxianwei made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2557 +- @KKIEEK made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2747 +- @Renzhihan made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2765 + ## v1.0.0rc6(03/03/2023) ### Highlights diff --git a/docs/en/notes/faq.md b/docs/en/notes/faq.md index 2adcba7fc..d7387cb4e 100644 --- a/docs/en/notes/faq.md +++ b/docs/en/notes/faq.md @@ -8,13 +8,14 @@ The compatible MMSegmentation, MMCV and MMEngine versions are as below. Please i | MMSegmentation version | MMCV version | MMEngine version | MMClassification (optional) version | MMDetection (optional) version | | :--------------------: | :----------------------------: | :---------------: | :---------------------------------: | :----------------------------: | -| dev-1.x branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 | -| 1.x branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 | +| dev-1.x branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 | +| main branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 | +| 1.0.0 | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 | | 1.0.0rc6 | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 | | 1.0.0rc5 | mmcv >= 2.0.0rc4 | MMEngine >= 0.2.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc6 | | 1.0.0rc4 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4, \<=3.0.0rc5 | -| 1.0.0rc3 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4 \<=3.0.0rc5 | -| 1.0.0rc2 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4 \<=3.0.0rc5 | +| 1.0.0rc3 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4, \<=3.0.0rc5 | +| 1.0.0rc2 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4, \<=3.0.0rc5 | | 1.0.0rc1 | mmcv >= 2.0.0rc1, \<=2.0.0rc3> | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | Not required | | 1.0.0rc0 | mmcv >= 2.0.0rc1, \<=2.0.0rc3> | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | Not required | @@ -61,7 +62,7 @@ But in binary segmentation task, there are two solutions: In summary, to implement binary segmentation methods users should modify below parameters in the `decode_head` and `auxiliary_head` configs. Here is a modification example of [pspnet_unet_s5-d16.py](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/_base_/models/pspnet_unet_s5-d16.py): -- (1) `num_classes=2`, `out_channels=2` and `use_sigmoid=False` in `CrossEntropyLoss`. +- (1) `num_classes=2`, `out_channels=2` and `use_sigmoid=False` in `CrossEntropyLoss`. ```python decode_head=dict( diff --git a/docs/zh_cn/notes/faq.md b/docs/zh_cn/notes/faq.md index 6c5264c37..e081acc16 100644 --- a/docs/zh_cn/notes/faq.md +++ b/docs/zh_cn/notes/faq.md @@ -8,13 +8,14 @@ | MMSegmentation version | MMCV version | MMEngine version | MMClassification (optional) version | MMDetection (optional) version | | :--------------------: | :----------------------------: | :---------------: | :---------------------------------: | :----------------------------: | -| dev-1.x branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 | -| 1.x branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 | +| dev-1.x branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 | +| main branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 | +| 1.0.0 | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 | | 1.0.0rc6 | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 | | 1.0.0rc5 | mmcv >= 2.0.0rc4 | MMEngine >= 0.2.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc6 | | 1.0.0rc4 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4, \<=3.0.0rc5 | -| 1.0.0rc3 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4 \<=3.0.0rc5 | -| 1.0.0rc2 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4 \<=3.0.0rc5 | +| 1.0.0rc3 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4, \<=3.0.0rc5 | +| 1.0.0rc2 | mmcv == 2.0.0rc3 | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc4, \<=3.0.0rc5 | | 1.0.0rc1 | mmcv >= 2.0.0rc1, \<=2.0.0rc3> | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | Not required | | 1.0.0rc0 | mmcv >= 2.0.0rc1, \<=2.0.0rc3> | MMEngine >= 0.1.0 | mmcls>=1.0.0rc0 | Not required | @@ -112,7 +113,7 @@ if self.reduce_zero_label: 关于您的数据集是否需要使用 reduce_zero_label,有以下两类情况: -- 例如在 [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isprs-potsdam) 数据集上,有 0-不透水面、1-建筑、2-低矮植被、3-树、4-汽车、5-杂乱,六类。但该数据集提供了两种RGB标签,一种为图像边缘处有黑色像素的标签,另一种是没有黑色边缘的标签。对于有黑色边缘的标签,在 [dataset_converters.py](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/tools/dataset_converters/potsdam.py)中,其将黑色边缘转换为 label 0,其余标签分别为 1-不透水面、2-建筑、3-低矮植被、4-树、5-汽车、6-杂乱,那么此时,就应该在数据集 [potsdam.py](https://github.com/open-mmlab/mmsegmentation/blob/ff95416c3b5ce8d62b9289f743531398efce534f/mmseg/datasets/potsdam.py#L23) 中将`reduce_zero_label=True`。如果使用的是没有黑色边缘的标签,那么 mask label 中只有 0-5,此时就应该使`reduce_zero_label=False`。需要结合您的实际情况来使用。 -- 例如在第 0 类为background类别的数据集上,如果您最终是需要将背景和您的其余类别分开时,是不需要使用`reduce_zero_label`的,此时在数据集中应该将其设置为`reduce_zero_label=False` +- 例如在 [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isprs-potsdam) 数据集上,有 0-不透水面、1-建筑、2-低矮植被、3-树、4-汽车、5-杂乱,六类。但该数据集提供了两种 RGB 标签,一种为图像边缘处有黑色像素的标签,另一种是没有黑色边缘的标签。对于有黑色边缘的标签,在 [dataset_converters.py](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/tools/dataset_converters/potsdam.py)中,其将黑色边缘转换为 label 0,其余标签分别为 1-不透水面、2-建筑、3-低矮植被、4-树、5-汽车、6-杂乱,那么此时,就应该在数据集 [potsdam.py](https://github.com/open-mmlab/mmsegmentation/blob/ff95416c3b5ce8d62b9289f743531398efce534f/mmseg/datasets/potsdam.py#L23) 中将`reduce_zero_label=True`。如果使用的是没有黑色边缘的标签,那么 mask label 中只有 0-5,此时就应该使`reduce_zero_label=False`。需要结合您的实际情况来使用。 +- 例如在第 0 类为 background 类别的数据集上,如果您最终是需要将背景和您的其余类别分开时,是不需要使用`reduce_zero_label`的,此时在数据集中应该将其设置为`reduce_zero_label=False` **注意:** 使用 `reduce_zero_label` 请确认数据集原始类别个数,如果只有两类,需要关闭 `reduce_zero_label` 即设置 `reduce_zero_label=False`。 diff --git a/mmseg/version.py b/mmseg/version.py index ef8e391a2..748e4cb49 100644 --- a/mmseg/version.py +++ b/mmseg/version.py @@ -1,6 +1,6 @@ # Copyright (c) Open-MMLab. All rights reserved. -__version__ = '1.0.0rc6' +__version__ = '1.0.0' def parse_version_info(version_str):