diff --git a/docs/en/advanced_guides/evaluation.md b/docs/en/advanced_guides/evaluation.md index b394c7690..55728281a 100644 --- a/docs/en/advanced_guides/evaluation.md +++ b/docs/en/advanced_guides/evaluation.md @@ -1 +1,158 @@ # Evaluation + +The evaluation procedure would be executed at [ValLoop](https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py#L300) and [TestLoop](https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py#L373), users can evaluate model performance during training or using the test script with simple settings in the configuration file. The `ValLoop` and `TestLoop` are properties of [Runner](https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py#L59), they will be built the first time they are called. To build the `ValLoop` successfully, the `val_dataloader` and `val_evaluator` must be set when building `Runner` since `dataloder` and `evaluator` are required parameters, and the same goes for `TestLoop`. For more information about the Runner's design, please refer to the [documentoation](https://github.com/open-mmlab/mmengine/blob/main/docs/en/design/runner.md) of [MMEngine](https://github.com/open-mmlab/mmengine). + +
+ +
test_step/val_step dataflow
+
+ +In MMSegmentation, we write the settings of dataloader and metrics in the config files of datasets and the configuration of the evaluation loop in the `schedule_x` config files by default. + +For example, in the ADE20K config file `configs/_base_/dataset/ade20k.py`, on lines 37 to 48, we configured the `val_dataloader`, on line 51, we select `IoUMetric` as the evaluator and set `mIoU` as the metric: + +```python +val_dataloader = dict( + batch_size=1, + num_workers=4, + persistent_workers=True, + sampler=dict(type='DefaultSampler', shuffle=False), + dataset=dict( + type=dataset_type, + data_root=data_root, + data_prefix=dict( + img_path='images/validation', + seg_map_path='annotations/validation'), + pipeline=test_pipeline)) + +val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU']) +``` + +To be able to evaluate the model during training, for example, we add the evaluation configuration to the file `configs/schedules/schedule_40k.py` on lines 15 to 16: + +```python +train_cfg = dict(type='IterBasedTrainLoop', max_iters=40000, val_interval=4000) +val_cfg = dict(type='ValLoop') +``` + +With the above two settings, MMSegmentation evaluates the **mIoU** metric of the model once every 4000 iterations during the training of 40K iterations. + +If we would like to test the model after training, we need to add the `test_dataloader`, `test_evaluator` and `test_cfg` configs to the config file. + +```python +test_dataloader = dict( + batch_size=1, + num_workers=4, + persistent_workers=True, + sampler=dict(type='DefaultSampler', shuffle=False), + dataset=dict( + type=dataset_type, + data_root=data_root, + data_prefix=dict( + img_path='images/validation', + seg_map_path='annotations/validation'), + pipeline=test_pipeline)) + +test_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU']) +test_cfg = dict(type='TestLoop') +``` + +In MMSegmentation, the settings of `test_dataloader` and `test_evaluator` are the same as the `ValLoop`'s dataloader and evaluator by default, we can modify these settings to meet our needs. + +## IoUMetric + +MMSegmentation implements [IoUMetric](https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/evaluation/metrics/iou_metric.py) and [CitysMetric](https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/evaluation/metrics/citys_metric.py) for evaluating the performance of models, based on the [BaseMetric](https://github.com/open-mmlab/mmengine/blob/main/mmengine/evaluator/metric.py) provided by [MMEngine](https://github.com/open-mmlab/mmengine). Please refer to [the documentation](https://mmengine.readthedocs.io/en/latest/tutorials/evaluation.html) for more details about the unified evaluation interface. + +Here we briefly describe the arguments and the two main methods of `IoUMetric`. + +The constructor of `IoUMetric` has some additional parameters besides the base `collect_device` and `prefix`. + +The arguments of the constructor: + +- ignore_index (int) - Index that will be ignored in evaluation. Default: 255. +- iou_metrics (list\[str\] | str) - Metrics to be calculated, the options includes 'mIoU', 'mDice' and 'mFscore'. +- nan_to_num (int, optional) - If specified, NaN values will be replaced by the numbers defined by the user. Default: None. +- beta (int) - Determines the weight of recall in the combined score. Default: 1. +- collect_device (str) - Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. +- prefix (str, optional) - The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If the prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None. + +`IoUMetric` implements the IoU metric calculation, the core two methods of `IoUMetric` are `process` and `compute_metrics`. + +- `process` method processes one batch of data and data_samples. +- `compute_metrics` method computes the metrics from processed results. + +#### IoUMetric.process + +Parameters: + +- data_batch (Any) - A batch of data from the dataloader. +- data_samples (Sequence\[dict\]) - A batch of outputs from the model. + +Returns: + +This method doesn't have returns since the processed results would be stored in `self.results`, which will be used to compute the metrics when all batches have been processed. + +#### IoUMetric.compute_metrics + +Parameters: + +- results (list) - The processed results of each batch. + +Returns: + +- Dict\[str, float\] - The computed metrics. The keys are the names of the metrics, and the values are corresponding results. The key mainly includes **aAcc**, **mIoU**, **mAcc**, **mDice**, **mFscore**, **mPrecision**, **mRecall**. + +## CitysMetric + +`CitysMetric` uses the official [CityscapesScripts](https://github.com/mcordts/cityscapesScripts) provided by Cityscapes to evaluate model performance. + +### Usage + +Before using it, please install the `cityscapesscripts` package first: + +```shell +pip install cityscapesscripts +``` + +Since the `IoUMetric` is used as the default evaluator in MMSegmentation, if you would like to use `CitysMetric`, customizing the config file is required. In your customized config file, you should overwrite the default evaluator as follows. + +```python +val_evaluator = dict(type='CitysMetric', citys_metrics=['cityscapes']) +test_evaluator = val_evaluator +``` + +### Interface + +The arguments of the constructor: + +- ignore_index (int) - Index that will be ignored in evaluation. Default: 255. +- citys_metrics (list\[str\] | str) - Metrics to be evaluated, Default: \['cityscapes'\]. +- to_label_id (bool) - whether convert output to label_id for submission. Default: True. +- suffix (str): The filename prefix of the png files. If the prefix is "somepath/xxx", the png files will be named "somepath/xxx.png". Default: '.format_cityscapes'. +- collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. +- prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If the prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None. + +#### CitysMetric.process + +This method would draw the masks on images and save the painted images to `work_dir`. + +Parameters: + +- data_batch (Any) - A batch of data from the dataloader. +- data_samples (Sequence\[dict\]) - A batch of outputs from the model. + +Returns: + +This method doesn't have returns, the annotations' path would be stored in `self.results`, which will be used to compute the metrics when all batches have been processed. + +#### CitysMetric.compute_metrics + +This method would call `cityscapesscripts.evaluation.evalPixelLevelSemanticLabeling` tool to calculate metrics. + +Parameters: + +- results (list) - Testing results of the dataset. + +Returns: + +- dict\[str: float\] - Cityscapes evaluation results. diff --git a/mmseg/evaluation/metrics/citys_metric.py b/mmseg/evaluation/metrics/citys_metric.py index af6e8b00d..50e9ea68a 100644 --- a/mmseg/evaluation/metrics/citys_metric.py +++ b/mmseg/evaluation/metrics/citys_metric.py @@ -76,9 +76,8 @@ class CitysMetric(BaseMetric): output.putpalette(palette) output.save(png_filename) - ann_dir = osp.join( - data_batch[0]['data_sample']['seg_map_path'].split('val')[0], - 'val') + ann_dir = osp.join(data_samples[0]['seg_map_path'].split('val')[0], + 'val') self.results.append(ann_dir) def compute_metrics(self, results: list) -> Dict[str, float]: @@ -86,9 +85,6 @@ class CitysMetric(BaseMetric): Args: results (list): Testing results of the dataset. - logger (logging.Logger | str | None): Logger used for printing - related information during evaluation. Default: None. - imgfile_prefix (str | None): The prefix of output image file Returns: dict[str: float]: Cityscapes evaluation results. diff --git a/mmseg/evaluation/metrics/iou_metric.py b/mmseg/evaluation/metrics/iou_metric.py index 5a6958b70..a152ef9dd 100644 --- a/mmseg/evaluation/metrics/iou_metric.py +++ b/mmseg/evaluation/metrics/iou_metric.py @@ -51,7 +51,7 @@ class IoUMetric(BaseMetric): """Process one batch of data and data_samples. The processed results should be stored in ``self.results``, which will - be used to computed the metrics when all batches have been processed. + be used to compute the metrics when all batches have been processed. Args: data_batch (dict): A batch of data from the dataloader. diff --git a/tests/test_evaluation/test_metrics/test_citys_metric.py b/tests/test_evaluation/test_metrics/test_citys_metric.py index 34c0c9a5e..a6d6db5ca 100644 --- a/tests/test_evaluation/test_metrics/test_citys_metric.py +++ b/tests/test_evaluation/test_metrics/test_citys_metric.py @@ -46,6 +46,8 @@ class TestCitysMetric(TestCase): 'tests/data/pseudo_cityscapes_dataset/gtFine/val/\ frankfurt/frankfurt_000000_000294_gtFine_labelTrainIds.png' + mm_inputs['seg_map_path'] = mm_inputs['data_sample'][ + 'seg_map_path'] packed_inputs.append(mm_inputs) return packed_inputs @@ -96,16 +98,20 @@ class TestCitysMetric(TestCase): def test_evaluate(self): """Test using the metric in the same way as Evalutor.""" - data_batch = self._demo_mm_inputs() - predictions = self._demo_mm_model_output() + data_batch = self._demo_mm_inputs(2) + predictions = self._demo_mm_model_output(2) + data_samples = [ + dict(**data, **result) + for data, result in zip(data_batch, predictions) + ] iou_metric = CitysMetric(citys_metrics=['cityscapes']) - iou_metric.process(data_batch, predictions) + iou_metric.process(data_batch, data_samples) res = iou_metric.evaluate(6) self.assertIsInstance(res, dict) # test to_label_id = True iou_metric = CitysMetric( citys_metrics=['cityscapes'], to_label_id=True) - iou_metric.process(data_batch, predictions) + iou_metric.process(data_batch, data_samples) res = iou_metric.evaluate(6) self.assertIsInstance(res, dict) import shutil