Bump to v0.18.0 (#940)

* bump to v0.18.0

* replace \ with /
pull/945/head v0.18.0
Junjun2016 2021-10-07 17:37:31 +08:00 committed by GitHub
parent d7924baab4
commit 8d49dd31e4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 36 additions and 3 deletions

View File

@ -49,7 +49,7 @@ This project is released under the [Apache 2.0 license](LICENSE).
## Changelog
v0.17.0 was released in 09/01/2021.
v0.18.0 was released in 10/07/2021.
Please refer to [changelog.md](docs/changelog.md) for details and release history.
## Benchmark and model zoo

View File

@ -48,7 +48,7 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
## 更新日志
最新的月度版本 v0.17.0 在 2021.09.01 发布。
最新的月度版本 v0.18.0 在 2021.10.07 发布。
如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/changelog.md)。
## 基准测试和模型库

View File

@ -1,5 +1,36 @@
## Changelog
### V0.18 (10/07/2021)
**Highlights**
- Support three real-time segmentation models (ICNet [#884](https://github.com/open-mmlab/mmsegmentation/pull/884), BiSeNetV1 [#851](https://github.com/open-mmlab/mmsegmentation/pull/851), and BiSeNetV2 [#804](https://github.com/open-mmlab/mmsegmentation/pull/804))
- Support one efficient segmentation model (FastFCN [#885](https://github.com/open-mmlab/mmsegmentation/pull/885))
- Support one efficient non-local/self-attention based segmentation model (ISANet [#70](https://github.com/open-mmlab/mmsegmentation/pull/70))
- Support COCO-Stuff 10k and 164k datasets ([#625](https://github.com/open-mmlab/mmsegmentation/pull/625))
- Support evaluate concated dataset separately ([#833](https://github.com/open-mmlab/mmsegmentation/pull/833))
- Support loading GT for evaluation from multi-file backend ([#867](https://github.com/open-mmlab/mmsegmentation/pull/867))
**New Features**
- Support three real-time segmentation models (ICNet [#884](https://github.com/open-mmlab/mmsegmentation/pull/884), BiSeNetV1 [#851](https://github.com/open-mmlab/mmsegmentation/pull/851), and BiSeNetV2 [#804](https://github.com/open-mmlab/mmsegmentation/pull/804))
- Support one efficient segmentation model (FastFCN [#885](https://github.com/open-mmlab/mmsegmentation/pull/885))
- Support one efficient non-local/self-attention based segmentation model (ISANet [#70](https://github.com/open-mmlab/mmsegmentation/pull/70))
- Support COCO-Stuff 10k and 164k datasets ([#625](https://github.com/open-mmlab/mmsegmentation/pull/625))
- Support evaluate concated dataset separately ([#833](https://github.com/open-mmlab/mmsegmentation/pull/833))
**Improvements**
- Support loading GT for evaluation from multi-file backend ([#867](https://github.com/open-mmlab/mmsegmentation/pull/867))
- Auto-convert SyncBN to BN when training on DP automatly([#772](https://github.com/open-mmlab/mmsegmentation/pull/772))
- Refactor Swin-Transformer ([#800](https://github.com/open-mmlab/mmsegmentation/pull/800))
**Bug Fixes**
- Update mmcv installation in dockerfile ([#860](https://github.com/open-mmlab/mmsegmentation/pull/860))
- Fix number of iteration bug when resuming checkpoint in distributed train ([#866](https://github.com/open-mmlab/mmsegmentation/pull/866))
- Fix parsing parse in val_step ([#906](https://github.com/open-mmlab/mmsegmentation/pull/906))
### V0.17 (09/01/2021)
**Highlights**

View File

@ -12,6 +12,7 @@ The compatible MMSegmentation and MMCV versions are as below. Please install the
| MMSegmentation version | MMCV version |
|:-------------------:|:-------------------:|
| master | mmcv-full>=1.3.13, <1.4.0 |
| 0.18.0 | mmcv-full>=1.3.13, <1.4.0 |
| 0.17.0 | mmcv-full>=1.3.7, <1.4.0 |
| 0.16.0 | mmcv-full>=1.3.7, <1.4.0 |
| 0.15.0 | mmcv-full>=1.3.7, <1.4.0 |

View File

@ -12,6 +12,7 @@
| MMSegmentation 版本 | MMCV 版本 |
|:-------------------:|:-------------------:|
| master | mmcv-full>=1.3.13, <1.4.0 |
| 0.18.0 | mmcv-full>=1.3.13, <1.4.0 |
| 0.17.0 | mmcv-full>=1.3.7, <1.4.0 |
| 0.16.0 | mmcv-full>=1.3.7, <1.4.0 |
| 0.15.0 | mmcv-full>=1.3.7, <1.4.0 |

View File

@ -1,6 +1,6 @@
# Copyright (c) Open-MMLab. All rights reserved.
__version__ = '0.17.0'
__version__ = '0.18.0'
def parse_version_info(version_str):