[Fix] README for mmseg 1.x (#2009)

* [Fix] README for mmseg 1.x

* typo

* link and refine
This commit is contained in:
Miao Zheng 2022-09-01 00:03:51 +08:00 committed by GitHub
parent 211584ffa2
commit 8f5dcc8579
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 124 additions and 168 deletions

View File

@ -1,23 +1,21 @@
# Contributing to mmsegmentation
# Contributing to MMSegmentation 1.x
All kinds of contributions are welcome, including but not limited to the following.
- Fixes (typo, bugs)
- New features and components
- Fix typo or bugs
- Add documentation or translate the documentation into other languages
- Add new features and components
## Workflow
1. fork and pull the latest mmsegmentation
2. checkout a new branch (do not use master branch for PRs)
1. fork and pull the latest MMSegmentation repository
2. checkout a new branch from 'dev-1.x' (do not use master branch for PRs)
3. commit your changes
4. create a PR
:::{note}
- If you plan to add some new features that involve large changes, it is encouraged to open an issue for discussion first.
- If you are the author of some papers and would like to include your method to mmsegmentation,
please contact Kai Chen (chenkaidev\[at\]gmail\[dot\]com). We will much appreciate your contribution.
:::
```{note}
If you plan to add some new features that involve large changes, it is encouraged to open an issue for discussion first.
```
## Code style
@ -27,15 +25,18 @@ We adopt [PEP8](https://www.python.org/dev/peps/pep-0008/) as the preferred code
We use the following tools for linting and formatting:
- [flake8](http://flake8.pycqa.org/en/latest/): linter
- [yapf](https://github.com/google/yapf): formatter
- [isort](https://github.com/timothycrosley/isort): sort imports
- [flake8](https://github.com/PyCQA/flake8): A wrapper around some linter tools.
- [isort](https://github.com/timothycrosley/isort): A Python utility to sort imports.
- [yapf](https://github.com/google/yapf): A formatter for Python files.
- [codespell](https://github.com/codespell-project/codespell): A Python utility to fix common misspellings in text files.
- [mdformat](https://github.com/executablebooks/mdformat): Mdformat is an opinionated Markdown formatter that can be used to enforce a consistent style in Markdown files.
- [docformatter](https://github.com/myint/docformatter): A formatter to format docstring.
Style configurations of yapf and isort can be found in [setup.cfg](../setup.cfg) and [.isort.cfg](../.isort.cfg).
Style configurations of yapf and isort can be found in [setup.cfg](./setup.cfg).
We use [pre-commit hook](https://pre-commit.com/) that checks and formats for `flake8`, `yapf`, `isort`, `trailing whitespaces`,
fixes `end-of-files`, sorts `requirments.txt` automatically on every commit.
The config for a pre-commit hook is stored in [.pre-commit-config](../.pre-commit-config.yaml).
We use [pre-commit hook](https://pre-commit.com/) that checks and formats for `flake8`, `yapf`, `isort`, `trailing whitespaces`, `markdown files`,
fixes `end-of-files`, `double-quoted-strings`, `python-encoding-pragma`, `mixed-line-ending`, sorts `requirments.txt` automatically on every commit.
The config for a pre-commit hook is stored in [.pre-commit-config](./.pre-commit-config.yaml).
After you clone the repository, you will need to install initialize pre-commit hook.

View File

@ -22,14 +22,14 @@
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmsegmentation)](https://pypi.org/project/mmsegmentation/)
[![PyPI](https://img.shields.io/pypi/v/mmsegmentation)](https://pypi.org/project/mmsegmentation)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmsegmentation.readthedocs.io/en/latest/)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmsegmentation.readthedocs.io/en/1.x/)
[![badge](https://github.com/open-mmlab/mmsegmentation/workflows/build/badge.svg)](https://github.com/open-mmlab/mmsegmentation/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmsegmentation/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmsegmentation)
[![license](https://img.shields.io/github/license/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/blob/master/LICENSE)
[![license](https://img.shields.io/github/license/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/blob/1.x/LICENSE)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues)
Documentation: https://mmsegmentation.readthedocs.io/
Documentation: https://mmsegmentation.readthedocs.io/en/1.x/
English | [简体中文](README_zh-CN.md)
@ -38,7 +38,7 @@ English | [简体中文](README_zh-CN.md)
MMSegmentation is an open source semantic segmentation toolbox based on PyTorch.
It is a part of the OpenMMLab project.
The master branch works with **PyTorch 1.5+**.
The 1.x branch works with **PyTorch 1.6+**.
![demo image](resources/seg_demo.gif)
@ -60,14 +60,29 @@ The master branch works with **PyTorch 1.5+**.
The training speed is faster than or comparable to other codebases.
## License
## What's New
This project is released under the [Apache 2.0 license](LICENSE).
v1.0.0rc0 was released in 31/8/2022.
Please refer to [changelog.md](docs/en/notes/changelog.md) for details and release history.
## Changelog
- Unifies interfaces of all components based on MMEngine.
- Faster training and testing speed with complete support of mixed precision training.
- Refactored and more flexible architecture.
v0.24.1 was released in 5/1/2022.
Please refer to [changelog.md](docs/en/changelog.md) for details and release history.
## Installation
Please refer to [get_started.md](docs/en/get_started.md#installation) for installation and [dataset_prepare.md](docs/en/user_guides/dataset_prepare.md#prepare-datasets) for dataset preparation.
## Get Started
Please see [Overview](docs/en/overview.md) for the general introduction of MMSegmentation.
Please see [user guides](https://mmsegmentation.readthedocs.io/en/1.x/user_guides/index.html#) for the basic usage of MMSegmentation.
There are also [advanced tutorials](https://mmsegmentation.readthedocs.io/en/dev-1.x/advanced_guides/index.html) for in-depth understanding of mmseg design and implementation .
A Colab tutorial is also provided. You may preview the notebook [here](demo/MMSegmentation_Tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/1.x/demo/MMSegmentation_Tutorial.ipynb) on Colab.
To migrate from MMSegmentation 1.x, please refer to [migration](docs/en/migration.md).
## Benchmark and model zoo
@ -127,36 +142,35 @@ Supported methods:
Supported datasets:
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#cityscapes)
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#pascal-voc)
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#ade20k)
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#pascal-context)
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#coco-stuff-10k)
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#coco-stuff-164k)
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#chase-db1)
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#drive)
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#hrf)
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#stare)
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#dark-zurich)
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#nighttime-driving)
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#loveda)
- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#isprs-potsdam)
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#isprs-vaihingen)
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/dataset_prepare.md#isaid)
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#cityscapes)
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#pascal-voc)
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#ade20k)
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#pascal-context)
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#coco-stuff-10k)
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#coco-stuff-164k)
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#chase-db1)
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#drive)
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#hrf)
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#stare)
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#dark-zurich)
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#nighttime-driving)
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#loveda)
- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#isprs-potsdam)
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#isprs-vaihingen)
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/dataset_prepare.md#isaid)
## Installation
Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions.
Please refer to [get_started.md](docs/en/get_started.md#installation) for installation and [dataset_prepare.md](docs/en/dataset_prepare.md#prepare-datasets) for dataset preparation.
## Contributing
## Get Started
We appreciate all contributions to improve MMSegmentation. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
Please see [train.md](docs/en/train.md) and [inference.md](docs/en/inference.md) for the basic usage of MMSegmentation.
There are also tutorials for [customizing dataset](docs/en/tutorials/customize_datasets.md), [designing data pipeline](docs/en/tutorials/data_pipeline.md), [customizing modules](docs/en/tutorials/customize_models.md), and [customizing runtime](docs/en/tutorials/customize_runtime.md).
We also provide many [training tricks](docs/en/tutorials/training_tricks.md) for better training and [useful tools](docs/en/useful_tools.md) for deployment.
## Acknowledgement
A Colab tutorial is also provided. You may preview the notebook [here](demo/MMSegmentation_Tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/master/demo/MMSegmentation_Tutorial.ipynb) on Colab.
Please refer to [FAQ](docs/en/faq.md) for frequently asked questions.
MMSegmentation is an open source project that welcome any contribution and feedback.
We wish that the toolbox and benchmark could serve the growing research
community by providing a flexible as well as standardized toolkit to reimplement existing methods
and develop their own new semantic segmentation methods.
## Citation
@ -171,19 +185,13 @@ If you find this project useful in your research, please consider cite:
}
```
## Contributing
## License
We appreciate all contributions to improve MMSegmentation. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
## Acknowledgement
MMSegmentation is an open source project that welcome any contribution and feedback.
We wish that the toolbox and benchmark could serve the growing research
community by providing a flexible as well as standardized toolkit to reimplement existing methods
and develop their own new semantic segmentation methods.
This project is released under the [Apache 2.0 license](LICENSE).
## Projects in OpenMMLab
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.

View File

@ -22,10 +22,10 @@
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmsegmentation)](https://pypi.org/project/mmsegmentation/)
[![PyPI](https://img.shields.io/pypi/v/mmsegmentation)](https://pypi.org/project/mmsegmentation)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmsegmentation.readthedocs.io/zh_CN/latest/)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmsegmentation.readthedocs.io/zh_CN/1.x/)
[![badge](https://github.com/open-mmlab/mmsegmentation/workflows/build/badge.svg)](https://github.com/open-mmlab/mmsegmentation/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmsegmentation/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmsegmentation)
[![license](https://img.shields.io/github/license/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/blob/master/LICENSE)
[![license](https://img.shields.io/github/license/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/blob/1.x/LICENSE)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues)
@ -37,7 +37,7 @@
MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 OpenMMLab 项目的一部分。
主分支代码目前支持 PyTorch 1.5 以上的版本。
1.x 分支代码目前支持 PyTorch 1.6 以上的版本。
![示例图片](resources/seg_demo.gif)
@ -59,14 +59,24 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
训练速度比其他语义分割代码库更快或者相当。
## 开源许可证
该项目采用 [Apache 2.0 开源许可证](LICENSE)。
## 更新日志
最新版本 v0.24.1 在 2022.5.1 发布。
如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/en/changelog.md)。
最新版本 v1.0.0rc0 在 2022.8.31 发布。
如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/en/notes/changelog.md)。
## 安装
请参考[快速入门文档](docs/zh_cn/get_started.md#installation)进行安装,参考[数据集准备](docs/zh_cn/user_guides/2_dataset_prepare.md)处理数据。
## 快速入门
请参考[概述](docs/zh_cn/overview.md)对 MMSegmetation 进行初步了解
请参考[用户指南](https://mmsegmentation.readthedocs.io/zh_CN/1.x/user_guides/index.html)了解 mmseg 的基本使用,以及[进阶指南](https://mmsegmentation.readthedocs.io/zh_CN/1.x/advanced_guides/index.html)深入了解 mmseg 设计和代码实现。
同时,我们提供了 Colab 教程。你可以在[这里](demo/MMSegmentation_Tutorial.ipynb)浏览教程,或者直接在 Colab 上[运行](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/1.x/demo/MMSegmentation_Tutorial.ipynb)。
若需要将0.x版本的代码迁移至新版请参考[迁移文档](docs/zh_cn/migration.md)。
## 基准测试和模型库
@ -126,36 +136,32 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
已支持的数据集:
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#cityscapes)
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#pascal-voc)
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#ade20k)
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#pascal-context)
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#coco-stuff-10k)
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#coco-stuff-164k)
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#chase-db1)
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#drive)
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#hrf)
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#stare)
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#dark-zurich)
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#nighttime-driving)
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#loveda)
- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#isprs-potsdam)
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#isprs-vaihingen)
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/zh_cn/dataset_prepare.md#isaid)
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#cityscapes)
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#pascal-voc)
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#ade20k)
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#pascal-context)
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#coco-stuff-10k)
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#coco-stuff-164k)
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#chase-db1)
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#drive)
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#hrf)
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#stare)
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#dark-zurich)
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#nighttime-driving)
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#loveda)
- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#isprs-potsdam)
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#isprs-vaihingen)
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#isaid)
## 安装
如果遇到问题,请参考 [常见问题解答](docs/zh_cn/notes/faq.md)。
请参考[快速入门文档](docs/zh_cn/get_started.md#installation)进行安装,参考[数据集准备](docs/zh_cn/dataset_prepare.md)处理数据。
## 贡献指南
## 快速入门
我们感谢所有的贡献者为改进和提升 MMSegmentation 所作出的努力。请参考[贡献指南](.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。
请参考[训练教程](docs/zh_cn/train.md)和[测试教程](docs/zh_cn/inference.md)学习 MMSegmentation 的基本使用。
我们也提供了一些进阶教程,内容覆盖了[增加自定义数据集](docs/zh_cn/tutorials/customize_datasets.md)[设计新的数据预处理流程](docs/zh_cn/tutorials/data_pipeline.md)[增加自定义模型](docs/zh_cn/tutorials/customize_models.md)[增加自定义的运行时配置](docs/zh_cn/tutorials/customize_runtime.md)。
除此之外,我们也提供了很多实用的[训练技巧说明](docs/zh_cn/tutorials/training_tricks.md)和模型部署相关的[有用的工具](docs/zh_cn/useful_tools.md)。
## 致谢
同时,我们提供了 Colab 教程。你可以在[这里](demo/MMSegmentation_Tutorial.ipynb)浏览教程,或者直接在 Colab 上[运行](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/master/demo/MMSegmentation_Tutorial.ipynb)。
如果遇到问题,请参考 [常见问题解答](docs/zh_cn/faq.md)。
MMSegmentation 是一个由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。 我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新模型,从而不断为开源社区提供贡献。
## 引用
@ -170,16 +176,13 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
}
```
## 贡献指南
## 开源许可证
我们感谢所有的贡献者为改进和提升 MMSegmentation 所作出的努力。请参考[贡献指南](.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。
## 致谢
MMSegmentation 是一个由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。 我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新模型,从而不断为开源社区提供贡献。
该项目采用 [Apache 2.0 开源许可证](LICENSE)。
## OpenMMLab 的其他项目
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab 深度学习模型训练库
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab 图像分类工具箱

View File

@ -118,7 +118,7 @@ test_dataloader = dict(dataset=dataset_A_test)
```
You can refer base dataset [tutorial](TODO) from mmengine for more details
You can refer base dataset [tutorial](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/basedataset.html) from mmengine for more details
### Multi-image Mix Dataset

View File

@ -5,6 +5,7 @@ Welcome to MMSegmentation's documentation!
:maxdepth: 1
:caption: Get Started
overview.md
get_started.md
.. toctree::
@ -43,7 +44,6 @@ Welcome to MMSegmentation's documentation!
notes/changelog.md
notes/faq.md
notes/CONTRIBUTING.md
.. toctree::
:caption: Switch Language

View File

@ -1,59 +0,0 @@
# Contributing to MMSegmentation 1.x
All kinds of contributions are welcome, including but not limited to the following.
- Fix typo or bugs
- Add documentation or translate the documentation into other languages
- Add new features and components
## Workflow
1. fork and pull the latest MMSegmentation repository
2. checkout a new branch from 'dev-1.x' (do not use master branch for PRs)
3. commit your changes
4. create a PR
```{note}
If you plan to add some new features that involve large changes, it is encouraged to open an issue for discussion first.
```
## Code style
### Python
We adopt [PEP8](https://www.python.org/dev/peps/pep-0008/) as the preferred code style.
We use the following tools for linting and formatting:
- [flake8](https://github.com/PyCQA/flake8): A wrapper around some linter tools.
- [isort](https://github.com/timothycrosley/isort): A Python utility to sort imports.
- [yapf](https://github.com/google/yapf): A formatter for Python files.
- [codespell](https://github.com/codespell-project/codespell): A Python utility to fix common misspellings in text files.
- [mdformat](https://github.com/executablebooks/mdformat): Mdformat is an opinionated Markdown formatter that can be used to enforce a consistent style in Markdown files.
- [docformatter](https://github.com/myint/docformatter): A formatter to format docstring.
Style configurations of yapf and isort can be found in [setup.cfg](./setup.cfg).
We use [pre-commit hook](https://pre-commit.com/) that checks and formats for `flake8`, `yapf`, `isort`, `trailing whitespaces`, `markdown files`,
fixes `end-of-files`, `double-quoted-strings`, `python-encoding-pragma`, `mixed-line-ending`, sorts `requirments.txt` automatically on every commit.
The config for a pre-commit hook is stored in [.pre-commit-config](./.pre-commit-config.yaml).
After you clone the repository, you will need to install initialize pre-commit hook.
```shell
pip install -U pre-commit
```
From the repository folder
```shell
pre-commit install
```
After this on every commit check code linters and formatter will be enforced.
> Before you create a PR, make sure that your code lints and is formatted by yapf.
### C++ and CUDA
We follow the [Google C++ Style Guide](https://google.github.io/styleguide/cppguide.html).

1
docs/en/overview.md Normal file
View File

@ -0,0 +1 @@
# Overview

View File

@ -17,7 +17,7 @@ For example, if some modification is made base on DeepLabV3, user may first inhe
If you are building an entirely new method that does not share the structure with any of the existing methods, you may create a folder `xxxnet` under `configs`,
Please refer to [mmengine](TODO) for detailed documentation.
Please refer to [mmengine](https://mmengine.readthedocs.io/en/latest/tutorials/config.html) for detailed documentation.
## Config Name Style
@ -231,7 +231,7 @@ resume = False # Whether to resume from existed model.
### Ignore some fields in the base configs
Sometimes, you may set `_delete_=True` to ignore some of the fields in base configs.
You may refer to [mmengine](TODO) for simple illustration.
You may refer to [mmengine](https://mmengine.readthedocs.io/en/latest/tutorials/config.html) for simple illustration.
In MMSegmentation, for example, to change the backbone of PSPNet with the following config.

View File

@ -38,7 +38,7 @@ Find the `vis_data` path of `work_dir` after starting training, for example, the
work_dirs/test_visual/20220810_115248/vis_data
```
The scalar file in vis_data path includes learning rate, losses and data_time etc, also record metrics results and you can refer [logging tutorial](TODO) in mmengine to log custom data. The tensorboard visualization results are executed with the following command:
The scalar file in vis_data path includes learning rate, losses and data_time etc, also record metrics results and you can refer [logging tutorial](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/logging.html) in mmengine to log custom data. The tensorboard visualization results are executed with the following command:
```shell
tensorboard --logdir work_dirs/test_visual/20220810_115248/vis_data
@ -76,4 +76,4 @@ we can also run the following command to view them in TensorBoard:
tensorboard --logdir work_dirs/test_visual/20220810_115248/vis_data
```
If you would like to know more visualization usage, you can refer to [visualization tutorial](todo) in mmengie.
If you would like to know more visualization usage, you can refer to [visualization tutorial](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/visualization.html) in mmengie.

View File

@ -9,13 +9,13 @@
.. toctree::
:maxdepth: 2
:caption: 用户文档
:caption: 用户指南
user_guides/index.rst
.. toctree::
:maxdepth: 2
:caption: 进阶文档
:caption: 进阶指南
advanced_guides/index.rst

1
docs/zh_cn/migration.md Normal file
View File

@ -0,0 +1 @@
# 迁移文档

1
docs/zh_cn/overview.md Normal file
View File

@ -0,0 +1 @@
# 概述