diff --git a/docs/zh_cn/train.md b/docs/zh_cn/train.md index ee20082e8..8e200b173 100644 --- a/docs/zh_cn/train.md +++ b/docs/zh_cn/train.md @@ -13,7 +13,7 @@ evaluation = dict(interval=4000) # 每4000 iterations 评估一次模型的性 **\*重要提示\***: 在配置文件里的默认学习率是针对4卡 GPU 和2张图/GPU (此时 batchsize = 4x2 = 8)来设置的。 同样,您也可以使用8卡 GPU 和 1张图/GPU 的设置,因为所有的模型均使用 cross-GPU 的 SyncBN 模式。 -我们可以在训练速度和 GPU 显存之间做平衡。当模型或者 Batch Size 比较大的时,可以传递`--cfg-options model.backbone.with_cp=True` ,使用 `with_cp` 来节省显存,但是速度会更慢,因为原先使用 `ith_cp` 时,是逐层反向传播(Back Propagation, BP),不会保存所有的梯度。 +我们可以在训练速度和 GPU 显存之间做平衡。当模型或者 Batch Size 比较大的时,可以传递`--cfg-options model.backbone.with_cp=True` ,使用 `with_cp` 来节省显存,但是速度会更慢,因为原先使用 `with_cp` 时,是逐层反向传播(Back Propagation, BP),不会保存所有的梯度。 ### 使用单台机器训练