[Feature] Support Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets (#2194)
add custom dataset add face occlusion dataset add config file for occlusion face fix format update prepare.md formatting formatting fix typo error for doc update downloading process Update dataset_prepare.md PR fix version to original repository. change to original repository.pull/2489/head
parent
7b09967fcc
commit
a1d8174017
|
@ -0,0 +1,78 @@
|
|||
dataset_type = 'FaceOccludedDataset'
|
||||
data_root = 'data/occlusion-aware-face-dataset'
|
||||
crop_size = (512, 512)
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations'),
|
||||
dict(type='Resize', img_scale=(512, 512)),
|
||||
dict(type='RandomFlip', prob=0.5),
|
||||
dict(type='RandomRotate', degree=(-30, 30), prob=0.5),
|
||||
dict(type='PhotoMetricDistortion'),
|
||||
dict(
|
||||
type='Normalize',
|
||||
mean=[123.675, 116.28, 103.53],
|
||||
std=[58.395, 57.12, 57.375],
|
||||
to_rgb=True),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(512, 512),
|
||||
img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=True,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='ResizeToMultiple', size_divisor=32),
|
||||
dict(type='RandomFlip'),
|
||||
dict(
|
||||
type='Normalize',
|
||||
mean=[123.675, 116.28, 103.53],
|
||||
std=[58.395, 57.12, 57.375],
|
||||
to_rgb=True),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img'])
|
||||
])
|
||||
]
|
||||
|
||||
dataset_train_A = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='NatOcc_hand_sot/img',
|
||||
ann_dir='NatOcc_hand_sot/mask',
|
||||
split='train.txt',
|
||||
pipeline=train_pipeline)
|
||||
|
||||
dataset_train_B = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='NatOcc_object/img',
|
||||
ann_dir='NatOcc_object/mask',
|
||||
split='train.txt',
|
||||
pipeline=train_pipeline)
|
||||
|
||||
dataset_train_C = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='RandOcc/img',
|
||||
ann_dir='RandOcc/mask',
|
||||
split='train.txt',
|
||||
pipeline=train_pipeline)
|
||||
|
||||
dataset_valid = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
img_dir='RealOcc/image',
|
||||
ann_dir='RealOcc/mask',
|
||||
split='RealOcc/split/val.txt',
|
||||
pipeline=test_pipeline)
|
||||
|
||||
data = dict(
|
||||
samples_per_gpu=2,
|
||||
workers_per_gpu=2,
|
||||
train=[dataset_train_A, dataset_train_B, dataset_train_C],
|
||||
val=dataset_valid)
|
|
@ -0,0 +1,63 @@
|
|||
# +
|
||||
_base_ = '../_base_/datasets/occlude_face.py'
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained='open-mmlab://resnet101_v1c',
|
||||
backbone=dict(
|
||||
type='ResNetV1c',
|
||||
depth=101,
|
||||
num_stages=4,
|
||||
out_indices=(0, 1, 2, 3),
|
||||
dilations=(1, 1, 2, 4),
|
||||
strides=(1, 2, 1, 1),
|
||||
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
||||
norm_eval=False,
|
||||
style='pytorch',
|
||||
contract_dilation=True),
|
||||
decode_head=dict(
|
||||
type='DepthwiseSeparableASPPHead',
|
||||
in_channels=2048,
|
||||
in_index=3,
|
||||
channels=512,
|
||||
dilations=(1, 12, 24, 36),
|
||||
c1_in_channels=256,
|
||||
c1_channels=48,
|
||||
dropout_ratio=0.1,
|
||||
num_classes=2,
|
||||
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
||||
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000)),
|
||||
auxiliary_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=1024,
|
||||
in_index=2,
|
||||
channels=256,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
dropout_ratio=0.1,
|
||||
num_classes=2,
|
||||
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||||
train_cfg=dict(),
|
||||
test_cfg=dict(mode='whole'))
|
||||
log_config = dict(
|
||||
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
||||
dist_params = dict(backend='nccl')
|
||||
log_level = 'INFO'
|
||||
load_from = None
|
||||
resume_from = None
|
||||
workflow = [('train', 1)]
|
||||
cudnn_benchmark = True
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optimizer_config = dict()
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=0.0001, by_epoch=False)
|
||||
runner = dict(type='IterBasedRunner', max_iters=30000)
|
||||
checkpoint_config = dict(by_epoch=False, interval=400)
|
||||
evaluation = dict(
|
||||
interval=400, metric=['mIoU', 'mDice', 'mFscore'], pre_eval=True)
|
||||
auto_resume = False
|
|
@ -1,3 +1,5 @@
|
|||
<!-- #region -->
|
||||
|
||||
## Prepare datasets
|
||||
|
||||
It is recommended to symlink the dataset root to `$MMSEGMENTATION/data`.
|
||||
|
@ -138,6 +140,21 @@ mmsegmentation
|
|||
│ │ ├── ann_dir
|
||||
│ │ │ ├── train
|
||||
│ │ │ ├── val
|
||||
│ ├── occlusion-aware-face-dataset
|
||||
│ │ ├── train.txt
|
||||
│ │ ├── NatOcc_hand_sot
|
||||
│ │ │ ├── img
|
||||
│ │ │ ├── mask
|
||||
│ │ ├── NatOcc_object
|
||||
│ │ │ ├── img
|
||||
│ │ │ ├── mask
|
||||
│ │ ├── RandOcc
|
||||
│ │ │ ├── img
|
||||
│ │ │ ├── mask
|
||||
│ │ ├── RealOcc
|
||||
│ │ │ ├── img
|
||||
│ │ │ ├── mask
|
||||
│ │ │ ├── split
|
||||
```
|
||||
|
||||
### Cityscapes
|
||||
|
@ -376,3 +393,190 @@ python tools/convert_datasets/isaid.py /path/to/iSAID
|
|||
```
|
||||
|
||||
In our default setting (`patch_width`=896, `patch_height`=896, `overlap_area`=384), it will generate 33978 images for training and 11644 images for validation.
|
||||
|
||||
### Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets
|
||||
|
||||
The dataset is generated by two techniques, Naturalistic occlusion generation, Random occlusion generation. you must install face-occlusion-generation and dataset. see more guide in https://github.com/kennyvoo/face-occlusion-generation.git
|
||||
|
||||
## Dataset Preparation
|
||||
|
||||
step 1
|
||||
|
||||
Create a folder for data generation materials on mmsegmentation folder.
|
||||
|
||||
```shell
|
||||
mkdir data_materials
|
||||
```
|
||||
|
||||
step 2
|
||||
|
||||
Please download the masks (11k-hands_mask.7z,CelebAMask-HQ-masks_corrected.7z) from this [drive](https://drive.google.com/drive/folders/15nZETWlGMdcKY6aHbchRsWkUI42KTNs5?usp=sharing)
|
||||
|
||||
Please download the images from [CelebAMask-HQ](https://github.com/switchablenorms/CelebAMask-HQ), [11k Hands.zip](https://sites.google.com/view/11khands) and [dtd-r1.0.1.tar.gz](https://www.robots.ox.ac.uk/~vgg/data/dtd/).
|
||||
|
||||
step 3
|
||||
|
||||
Download a upsampled COCO objects images and masks (coco_object.7z). files can be found in this [drive](https://drive.google.com/drive/folders/15nZETWlGMdcKY6aHbchRsWkUI42KTNs5?usp=sharing).
|
||||
|
||||
Download CelebAMask-HQ and 11k Hands images split txt files. (11k_hands_sample.txt, CelebAMask-HQ-WO-train.txt) found in [drive](https://drive.google.com/drive/folders/15nZETWlGMdcKY6aHbchRsWkUI42KTNs5?usp=sharing).
|
||||
|
||||
download file to ./data_materials
|
||||
|
||||
```none
|
||||
CelebAMask-HQ.zip
|
||||
CelebAMask-HQ-masks_corrected.7z
|
||||
CelebAMask-HQ-WO-train.txt
|
||||
RealOcc.7z
|
||||
RealOcc-Wild.7z
|
||||
11k-hands_mask.7z
|
||||
11k Hands.zip
|
||||
11k_hands_sample.txt
|
||||
coco_object.7z
|
||||
dtd-r1.0.1.tar.gz
|
||||
```
|
||||
|
||||
______________________________________________________________________
|
||||
|
||||
```bash
|
||||
apt-get install p7zip-full
|
||||
|
||||
cd data_materials
|
||||
|
||||
#make occlusion-aware-face-dataset folder
|
||||
mkdir path-to-mmsegmentaion/data/occlusion-aware-face-dataset
|
||||
|
||||
#extract celebAMask-HQ and split by train-set
|
||||
unzip CelebAMask-HQ.zip
|
||||
7za x CelebAMask-HQ-masks_corrected.7z -o./CelebAMask-HQ
|
||||
#copy training data to train-image-folder
|
||||
rsync -a ./CelebAMask-HQ/CelebA-HQ-img/ --files-from=./CelebAMask-HQ-WO-train.txt ./CelebAMask-HQ-WO-Train_img
|
||||
#create a file-name txt file for copying mask
|
||||
basename -s .jpg ./CelebAMask-HQ-WO-Train_img/* > train.txt
|
||||
#add .png to file-name txt file
|
||||
xargs -n 1 -i echo {}.png < train.txt > mask_train.txt
|
||||
#copy training data to train-mask-folder
|
||||
rsync -a ./CelebAMask-HQ/CelebAMask-HQ-masks_corrected/ --files-from=./mask_train.txt ./CelebAMask-HQ-WO-Train_mask
|
||||
mv train.txt ../data/occlusion-aware-face-dataset
|
||||
|
||||
#extract DTD
|
||||
tar -zxvf dtd-r1.0.1.tar.gz
|
||||
mv dtd DTD
|
||||
|
||||
#extract hands dataset and split by 200 samples
|
||||
7za x 11k-hands_masks.7z -o.
|
||||
unzip Hands.zip
|
||||
rsync -a ./Hands/ --files-from=./11k_hands_sample.txt ./11k-hands_img
|
||||
|
||||
#extract upscaled coco object
|
||||
7za x coco_object.7z -o.
|
||||
mv coco_object/* .
|
||||
|
||||
#extract validation set
|
||||
7za x RealOcc.7z -o../data/occlusion-aware-face-dataset
|
||||
|
||||
```
|
||||
|
||||
**Dataset material Organization:**
|
||||
|
||||
```none
|
||||
|
||||
├── data_materials
|
||||
│ ├── CelebAMask-HQ-WO-Train_img
|
||||
│ │ ├── {image}.jpg
|
||||
│ ├── CelebAMask-HQ-WO-Train_mask
|
||||
│ │ ├── {mask}.png
|
||||
│ ├── DTD
|
||||
│ │ ├── images
|
||||
│ │ │ ├── {classA}
|
||||
│ │ │ │ ├── {image}.jpg
|
||||
│ │ │ ├── {classB}
|
||||
│ │ │ │ ├── {image}.jpg
|
||||
│ ├── 11k-hands_img
|
||||
│ │ ├── {image}.jpg
|
||||
│ ├── 11k-hands_mask
|
||||
│ │ ├── {mask}.png
|
||||
│ ├── object_image_sr
|
||||
│ │ ├── {image}.jpg
|
||||
│ ├── object_mask_x4
|
||||
│ │ ├── {mask}.png
|
||||
|
||||
```
|
||||
|
||||
## Data Generation
|
||||
|
||||
```bash
|
||||
git clone https://github.com/kennyvoo/face-occlusion-generation.git
|
||||
cd face_occlusion-generation
|
||||
```
|
||||
|
||||
Example script to generate NatOcc hand dataset
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 NUM_WORKERS=4 python main.py \
|
||||
--config ./configs/natocc_hand.yaml \
|
||||
--opts OUTPUT_PATH "path/to/mmsegmentation/data/occlusion-aware-face-dataset/NatOcc_hand_sot"\
|
||||
AUGMENTATION.SOT True \
|
||||
SOURCE_DATASET.IMG_DIR "path/to/data_materials/CelebAMask-HQ-WO-Train_img" \
|
||||
SOURCE_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_mask" \
|
||||
OCCLUDER_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/11k-hands_img" \
|
||||
OCCLUDER_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/11k-hands_masks"
|
||||
```
|
||||
|
||||
Example script to generate NatOcc object dataset
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 NUM_WORKERS=4 python main.py \
|
||||
--config ./configs/natocc_objects.yaml \
|
||||
--opts OUTPUT_PATH "path/to/mmsegmentation/data/occlusion-aware-face-dataset/NatOcc_object" \
|
||||
SOURCE_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_img" \
|
||||
SOURCE_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_mask" \
|
||||
OCCLUDER_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/object_image_sr" \
|
||||
OCCLUDER_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/object_mask_x4"
|
||||
```
|
||||
|
||||
Example script to generate RandOcc dataset
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 NUM_WORKERS=4 python main.py \
|
||||
--config ./configs/randocc.yaml \
|
||||
--opts OUTPUT_PATH "path/to/mmsegmentation/data/occlusion-aware-face-dataset/RandOcc" \
|
||||
SOURCE_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_img/" \
|
||||
SOURCE_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_mask" \
|
||||
OCCLUDER_DATASET.IMG_DIR "path/to/jw93/mmsegmentation/data_materials/DTD/images"
|
||||
```
|
||||
|
||||
**Dataset Organization:**
|
||||
|
||||
```none
|
||||
├── data
|
||||
│ ├── occlusion-aware-face-dataset
|
||||
│ │ ├── train.txt
|
||||
│ │ ├── NatOcc_hand_sot
|
||||
│ │ │ ├── img
|
||||
│ │ │ │ ├── {image}.jpg
|
||||
│ │ │ ├── mask
|
||||
│ │ │ │ ├── {mask}.png
|
||||
│ │ ├── NatOcc_object
|
||||
│ │ │ ├── img
|
||||
│ │ │ │ ├── {image}.jpg
|
||||
│ │ │ ├── mask
|
||||
│ │ │ │ ├── {mask}.png
|
||||
│ │ ├── RandOcc
|
||||
│ │ │ ├── img
|
||||
│ │ │ │ ├── {image}.jpg
|
||||
│ │ │ ├── mask
|
||||
│ │ │ │ ├── {mask}.png
|
||||
│ │ ├── RealOcc
|
||||
│ │ │ ├── img
|
||||
│ │ │ │ ├── {image}.jpg
|
||||
│ │ │ ├── mask
|
||||
│ │ │ │ ├── {mask}.png
|
||||
│ │ │ ├── split
|
||||
│ │ │ │ ├── val.txt
|
||||
```
|
||||
|
||||
<!-- #endregion -->
|
||||
|
||||
```python
|
||||
|
||||
```
|
||||
|
|
|
@ -9,6 +9,7 @@ from .dark_zurich import DarkZurichDataset
|
|||
from .dataset_wrappers import (ConcatDataset, MultiImageMixDataset,
|
||||
RepeatDataset)
|
||||
from .drive import DRIVEDataset
|
||||
from .face import FaceOccludedDataset
|
||||
from .hrf import HRFDataset
|
||||
from .isaid import iSAIDDataset
|
||||
from .isprs import ISPRSDataset
|
||||
|
@ -26,5 +27,5 @@ __all__ = [
|
|||
'PascalContextDataset59', 'ChaseDB1Dataset', 'DRIVEDataset', 'HRFDataset',
|
||||
'STAREDataset', 'DarkZurichDataset', 'NightDrivingDataset',
|
||||
'COCOStuffDataset', 'LoveDADataset', 'MultiImageMixDataset',
|
||||
'iSAIDDataset', 'ISPRSDataset', 'PotsdamDataset'
|
||||
'iSAIDDataset', 'ISPRSDataset', 'PotsdamDataset', 'FaceOccludedDataset'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,23 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import os.path as osp
|
||||
|
||||
from .builder import DATASETS
|
||||
from .custom import CustomDataset
|
||||
|
||||
|
||||
@DATASETS.register_module()
|
||||
class FaceOccludedDataset(CustomDataset):
|
||||
"""Face Occluded dataset.
|
||||
|
||||
Args:
|
||||
split (str): Split txt file for Pascal VOC.
|
||||
"""
|
||||
|
||||
CLASSES = ('background', 'face')
|
||||
|
||||
PALETTE = [[0, 0, 0], [128, 0, 0]]
|
||||
|
||||
def __init__(self, split, **kwargs):
|
||||
super(FaceOccludedDataset, self).__init__(
|
||||
img_suffix='.jpg', seg_map_suffix='.png', split=split, **kwargs)
|
||||
assert osp.exists(self.img_dir) and self.split is not None
|
Loading…
Reference in New Issue