diff --git a/configs/_base_/models/ocrnet_r50-d8.py b/configs/_base_/models/ocrnet_r50-d8.py index 52fe060b1..0f5ff956c 100644 --- a/configs/_base_/models/ocrnet_r50-d8.py +++ b/configs/_base_/models/ocrnet_r50-d8.py @@ -23,7 +23,7 @@ model = dict( channels=256, num_convs=1, concat_input=False, - drop_out_ratio=0.1, + dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, @@ -35,7 +35,7 @@ model = dict( in_index=3, channels=512, ocr_channels=256, - drop_out_ratio=0.1, + dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, diff --git a/demo/MMSegmentation_Tutorial.ipynb b/demo/MMSegmentation_Tutorial.ipynb index 6ec7225dd..127ad4e6a 100644 --- a/demo/MMSegmentation_Tutorial.ipynb +++ b/demo/MMSegmentation_Tutorial.ipynb @@ -1031,7 +1031,7 @@ " in_index=3,\n", " channels=512,\n", " pool_scales=(1, 2, 3, 6),\n", - " drop_out_ratio=0.1,\n", + " dropout_ratio=0.1,\n", " num_classes=8,\n", " norm_cfg=dict(type='BN', requires_grad=True),\n", " align_corners=False,\n", @@ -1044,7 +1044,7 @@ " channels=256,\n", " num_convs=1,\n", " concat_input=False,\n", - " drop_out_ratio=0.1,\n", + " dropout_ratio=0.1,\n", " num_classes=8,\n", " norm_cfg=dict(type='BN', requires_grad=True),\n", " align_corners=False,\n", diff --git a/docs/config.md b/docs/config.md index 595b8f977..d5c1cd9b6 100644 --- a/docs/config.md +++ b/docs/config.md @@ -66,7 +66,7 @@ model = dict( in_index=3, # The index of feature map to select. channels=512, # The intermediate channels of decode head. pool_scales=(1, 2, 3, 6), # The avg pooling scales of PSPHead. Please refer to paper for details. - drop_out_ratio=0.1, # The dropout ratio before final classification layer. + dropout_ratio=0.1, # The dropout ratio before final classification layer. num_classes=19, # Number of segmentation classs. Usually 19 for cityscapes, 21 for VOC, 150 for ADE20k. norm_cfg=dict(type='SyncBN', requires_grad=True), # The configuration of norm layer. align_corners=False, # The align_corners argument for resize in decoding. @@ -81,7 +81,7 @@ model = dict( channels=256, # The intermediate channels of decode head. num_convs=1, # Number of convs in FCNHead. It is usually 1 in auxiliary head. concat_input=False, # Whether concat output of convs with input before classification layer. - drop_out_ratio=0.1, # The dropout ratio before final classification layer. + dropout_ratio=0.1, # The dropout ratio before final classification layer. num_classes=19, # Number of segmentation classs. Usually 19 for cityscapes, 21 for VOC, 150 for ADE20k. norm_cfg=dict(type='SyncBN', requires_grad=True), # The configuration of norm layer. align_corners=False, # The align_corners argument for resize in decoding. diff --git a/docs/tutorials/new_modules.md b/docs/tutorials/new_modules.md index 86f77f1e3..9832a30f0 100644 --- a/docs/tutorials/new_modules.md +++ b/docs/tutorials/new_modules.md @@ -168,7 +168,7 @@ model = dict( in_index=3, channels=512, pool_scales=(1, 2, 3, 6), - drop_out_ratio=0.1, + dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False,