mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
Expand_ratio docstrings updated.
This commit is contained in:
parent
88a123d16f
commit
a9ac0d8188
@ -7,7 +7,7 @@ model = dict(
|
|||||||
downsample_dw_channels=(32, 48),
|
downsample_dw_channels=(32, 48),
|
||||||
global_in_channels=64,
|
global_in_channels=64,
|
||||||
global_block_channels=(64, 96, 128),
|
global_block_channels=(64, 96, 128),
|
||||||
global_block_downsample_factors=(2, 2, 1),
|
global_block_strides=(2, 2, 1),
|
||||||
global_out_channels=128,
|
global_out_channels=128,
|
||||||
higher_in_channels=64,
|
higher_in_channels=64,
|
||||||
lower_in_channels=128,
|
lower_in_channels=128,
|
||||||
|
@ -79,13 +79,14 @@ class GlobalFeatureExtractor(nn.Module):
|
|||||||
Default: (64, 96, 128)
|
Default: (64, 96, 128)
|
||||||
out_channels(int): Number of output channels of the GFE module.
|
out_channels(int): Number of output channels of the GFE module.
|
||||||
Default: 128
|
Default: 128
|
||||||
expand_ratio (int): Upsampling factor of each Inverted Residual
|
expand_ratio (int): Adjusts number of channels of the hidden layer
|
||||||
module. Default: 6
|
in InvertedResidual by this amount.
|
||||||
|
Default: 6
|
||||||
num_blocks (tuple[int]): Tuple of ints. Each int specifies the
|
num_blocks (tuple[int]): Tuple of ints. Each int specifies the
|
||||||
number of times each Inverted Residual module is repeated.
|
number of times each Inverted Residual module is repeated.
|
||||||
The repeated Inverted Residual modules are called a 'group'.
|
The repeated Inverted Residual modules are called a 'group'.
|
||||||
Default: (3, 3, 3)
|
Default: (3, 3, 3)
|
||||||
downsample_factors (tuple[int]): Tuple of ints. Each int specifies
|
strides (tuple[int]): Tuple of ints. Each int specifies
|
||||||
the downsampling factor of each 'group'.
|
the downsampling factor of each 'group'.
|
||||||
Default: (2, 2, 1)
|
Default: (2, 2, 1)
|
||||||
pool_scales (tuple[int]): Tuple of ints. Each int specifies
|
pool_scales (tuple[int]): Tuple of ints. Each int specifies
|
||||||
@ -106,7 +107,7 @@ class GlobalFeatureExtractor(nn.Module):
|
|||||||
out_channels=128,
|
out_channels=128,
|
||||||
expand_ratio=6,
|
expand_ratio=6,
|
||||||
num_blocks=(3, 3, 3),
|
num_blocks=(3, 3, 3),
|
||||||
downsample_factors=(2, 2, 1),
|
strides=(2, 2, 1),
|
||||||
pool_scales=(1, 2, 3, 6),
|
pool_scales=(1, 2, 3, 6),
|
||||||
conv_cfg=None,
|
conv_cfg=None,
|
||||||
norm_cfg=dict(type='BN'),
|
norm_cfg=dict(type='BN'),
|
||||||
@ -118,17 +119,14 @@ class GlobalFeatureExtractor(nn.Module):
|
|||||||
self.act_cfg = act_cfg
|
self.act_cfg = act_cfg
|
||||||
assert len(block_channels) == len(num_blocks) == 3
|
assert len(block_channels) == len(num_blocks) == 3
|
||||||
self.bottleneck1 = self._make_layer(in_channels, block_channels[0],
|
self.bottleneck1 = self._make_layer(in_channels, block_channels[0],
|
||||||
num_blocks[0],
|
num_blocks[0], strides[0],
|
||||||
downsample_factors[0],
|
|
||||||
expand_ratio)
|
expand_ratio)
|
||||||
self.bottleneck2 = self._make_layer(block_channels[0],
|
self.bottleneck2 = self._make_layer(block_channels[0],
|
||||||
block_channels[1], num_blocks[1],
|
block_channels[1], num_blocks[1],
|
||||||
downsample_factors[1],
|
strides[1], expand_ratio)
|
||||||
expand_ratio)
|
|
||||||
self.bottleneck3 = self._make_layer(block_channels[1],
|
self.bottleneck3 = self._make_layer(block_channels[1],
|
||||||
block_channels[2], num_blocks[2],
|
block_channels[2], num_blocks[2],
|
||||||
downsample_factors[2],
|
strides[2], expand_ratio)
|
||||||
expand_ratio)
|
|
||||||
self.ppm = PPM(
|
self.ppm = PPM(
|
||||||
pool_scales,
|
pool_scales,
|
||||||
block_channels[2],
|
block_channels[2],
|
||||||
@ -269,8 +267,8 @@ class FastSCNN(nn.Module):
|
|||||||
the output channels for each of the MobileNet-v2 bottleneck
|
the output channels for each of the MobileNet-v2 bottleneck
|
||||||
residual blocks in GFE.
|
residual blocks in GFE.
|
||||||
Default: (64, 96, 128).
|
Default: (64, 96, 128).
|
||||||
global_block_downsample_factors (tuple[int]): Tuple of integers
|
global_block_strides (tuple[int]): Tuple of integers
|
||||||
that describe the downsampling factors for each of the
|
that describe the strides (downsampling factors) for each of the
|
||||||
MobileNet-v2 bottleneck residual blocks in GFE.
|
MobileNet-v2 bottleneck residual blocks in GFE.
|
||||||
Default: (2, 2, 1).
|
Default: (2, 2, 1).
|
||||||
global_out_channels (int): Number of output channels of GFE.
|
global_out_channels (int): Number of output channels of GFE.
|
||||||
@ -303,7 +301,7 @@ class FastSCNN(nn.Module):
|
|||||||
downsample_dw_channels=(32, 48),
|
downsample_dw_channels=(32, 48),
|
||||||
global_in_channels=64,
|
global_in_channels=64,
|
||||||
global_block_channels=(64, 96, 128),
|
global_block_channels=(64, 96, 128),
|
||||||
global_block_downsample_factors=(2, 2, 1),
|
global_block_strides=(2, 2, 1),
|
||||||
global_out_channels=128,
|
global_out_channels=128,
|
||||||
higher_in_channels=64,
|
higher_in_channels=64,
|
||||||
lower_in_channels=128,
|
lower_in_channels=128,
|
||||||
@ -324,7 +322,7 @@ class FastSCNN(nn.Module):
|
|||||||
|
|
||||||
# Calculate scale factor used in FFM.
|
# Calculate scale factor used in FFM.
|
||||||
self.scale_factor = 1
|
self.scale_factor = 1
|
||||||
for factor in global_block_downsample_factors:
|
for factor in global_block_strides:
|
||||||
self.scale_factor *= factor
|
self.scale_factor *= factor
|
||||||
|
|
||||||
self.in_channels = in_channels
|
self.in_channels = in_channels
|
||||||
@ -332,7 +330,7 @@ class FastSCNN(nn.Module):
|
|||||||
self.downsample_dw_channels2 = downsample_dw_channels[1]
|
self.downsample_dw_channels2 = downsample_dw_channels[1]
|
||||||
self.global_in_channels = global_in_channels
|
self.global_in_channels = global_in_channels
|
||||||
self.global_block_channels = global_block_channels
|
self.global_block_channels = global_block_channels
|
||||||
self.global_block_downsample_factors = global_block_downsample_factors
|
self.global_block_strides = global_block_strides
|
||||||
self.global_out_channels = global_out_channels
|
self.global_out_channels = global_out_channels
|
||||||
self.higher_in_channels = higher_in_channels
|
self.higher_in_channels = higher_in_channels
|
||||||
self.lower_in_channels = lower_in_channels
|
self.lower_in_channels = lower_in_channels
|
||||||
@ -353,7 +351,7 @@ class FastSCNN(nn.Module):
|
|||||||
global_in_channels,
|
global_in_channels,
|
||||||
global_block_channels,
|
global_block_channels,
|
||||||
global_out_channels,
|
global_out_channels,
|
||||||
downsample_factors=self.global_block_downsample_factors,
|
downsample_factors=self.global_block_strides,
|
||||||
conv_cfg=self.conv_cfg,
|
conv_cfg=self.conv_cfg,
|
||||||
norm_cfg=self.norm_cfg,
|
norm_cfg=self.norm_cfg,
|
||||||
act_cfg=self.act_cfg,
|
act_cfg=self.act_cfg,
|
||||||
|
Loading…
x
Reference in New Issue
Block a user