From b24099aaa05702348091abff418ca27990b8195d Mon Sep 17 00:00:00 2001 From: CSH <40987381+csatsurnh@users.noreply.github.com> Date: Mon, 3 Apr 2023 18:49:08 +0800 Subject: [PATCH] [Doc] Update links in README (#2831) --- README.md | 48 ++++++++++++++++++++++++------------------------ README_zh-CN.md | 48 ++++++++++++++++++++++++------------------------ 2 files changed, 48 insertions(+), 48 deletions(-) diff --git a/README.md b/README.md index e47f6d080..f16c13d9d 100644 --- a/README.md +++ b/README.md @@ -20,14 +20,14 @@ [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmsegmentation)](https://pypi.org/project/mmsegmentation/) [![PyPI](https://img.shields.io/pypi/v/mmsegmentation)](https://pypi.org/project/mmsegmentation) -[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmsegmentation.readthedocs.io/en/1.x/) +[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmsegmentation.readthedocs.io/en/main/) [![badge](https://github.com/open-mmlab/mmsegmentation/workflows/build/badge.svg)](https://github.com/open-mmlab/mmsegmentation/actions) [![codecov](https://codecov.io/gh/open-mmlab/mmsegmentation/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmsegmentation) -[![license](https://img.shields.io/github/license/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/blob/1.x/LICENSE) +[![license](https://img.shields.io/github/license/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/blob/main/LICENSE) [![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues) [![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues) -Documentation: +Documentation: English | [简体中文](README_zh-CN.md) @@ -58,7 +58,7 @@ English | [简体中文](README_zh-CN.md) MMSegmentation is an open source semantic segmentation toolbox based on PyTorch. It is a part of the OpenMMLab project. -The 1.x branch works with **PyTorch 1.6+**. +The main branch works with **PyTorch 1.6+**. ![demo image](resources/seg_demo.gif) @@ -96,12 +96,12 @@ Please refer to [get_started.md](docs/en/get_started.md#installation) for instal Please see [Overview](docs/en/overview.md) for the general introduction of MMSegmentation. -Please see [user guides](https://mmsegmentation.readthedocs.io/en/1.x/user_guides/index.html#) for the basic usage of MMSegmentation. +Please see [user guides](https://mmsegmentation.readthedocs.io/en/main/user_guides/index.html#) for the basic usage of MMSegmentation. There are also [advanced tutorials](https://mmsegmentation.readthedocs.io/en/main/advanced_guides/index.html) for in-depth understanding of mmseg design and implementation . -A Colab tutorial is also provided. You may preview the notebook [here](demo/MMSegmentation_Tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/1.x/demo/MMSegmentation_Tutorial.ipynb) on Colab. +A Colab tutorial is also provided. You may preview the notebook [here](demo/MMSegmentation_Tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/main/demo/MMSegmentation_Tutorial.ipynb) on Colab. -To migrate from MMSegmentation 1.x, please refer to [migration](docs/en/migration). +To migrate from MMSegmentation 0.x, please refer to [migration](docs/en/migration). ## Benchmark and model zoo @@ -173,23 +173,23 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
Supported datasets: -- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#cityscapes) -- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#pascal-voc) -- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#ade20k) -- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#pascal-context) -- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-10k) -- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-164k) -- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#chase-db1) -- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#drive) -- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#hrf) -- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#stare) -- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#dark-zurich) -- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#nighttime-driving) -- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#loveda) -- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isprs-potsdam) -- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isprs-vaihingen) -- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isaid) -- [x] [Mapillary Vistas](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#mapillary-vistas-datasets) +- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#cityscapes) +- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#pascal-voc) +- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#ade20k) +- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#pascal-context) +- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-10k) +- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-164k) +- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#chase-db1) +- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#drive) +- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#hrf) +- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#stare) +- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#dark-zurich) +- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#nighttime-driving) +- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#loveda) +- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isprs-potsdam) +- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isprs-vaihingen) +- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isaid) +- [x] [Mapillary Vistas](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#mapillary-vistas-datasets)
diff --git a/README_zh-CN.md b/README_zh-CN.md index a4e404a71..2ec9a911b 100644 --- a/README_zh-CN.md +++ b/README_zh-CN.md @@ -20,14 +20,14 @@ [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmsegmentation)](https://pypi.org/project/mmsegmentation/) [![PyPI](https://img.shields.io/pypi/v/mmsegmentation)](https://pypi.org/project/mmsegmentation) -[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmsegmentation.readthedocs.io/zh_CN/1.x/) +[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmsegmentation.readthedocs.io/zh_CN/main/) [![badge](https://github.com/open-mmlab/mmsegmentation/workflows/build/badge.svg)](https://github.com/open-mmlab/mmsegmentation/actions) [![codecov](https://codecov.io/gh/open-mmlab/mmsegmentation/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmsegmentation) -[![license](https://img.shields.io/github/license/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/blob/1.x/LICENSE) +[![license](https://img.shields.io/github/license/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/blob/main/LICENSE) [![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues) [![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmsegmentation.svg)](https://github.com/open-mmlab/mmsegmentation/issues) -文档: +文档: [English](README.md) | 简体中文 @@ -57,7 +57,7 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 OpenMMLab 项目的一部分。 -1.x 分支代码目前支持 PyTorch 1.6 以上的版本。 +main 分支代码目前支持 PyTorch 1.6 以上的版本。 ![示例图片](resources/seg_demo.gif) @@ -92,11 +92,11 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O 请参考[概述](docs/zh_cn/overview.md)对 MMSegmetation 进行初步了解 -请参考[用户指南](https://mmsegmentation.readthedocs.io/zh_CN/1.x/user_guides/index.html)了解 mmseg 的基本使用,以及[进阶指南](https://mmsegmentation.readthedocs.io/zh_CN/1.x/advanced_guides/index.html)深入了解 mmseg 设计和代码实现。 +请参考[用户指南](https://mmsegmentation.readthedocs.io/zh_CN/main/user_guides/index.html)了解 mmseg 的基本使用,以及[进阶指南](https://mmsegmentation.readthedocs.io/zh_CN/main/advanced_guides/index.html)深入了解 mmseg 设计和代码实现。 -同时,我们提供了 Colab 教程。你可以在[这里](demo/MMSegmentation_Tutorial.ipynb)浏览教程,或者直接在 Colab 上[运行](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/1.x/demo/MMSegmentation_Tutorial.ipynb)。 +同时,我们提供了 Colab 教程。你可以在[这里](demo/MMSegmentation_Tutorial.ipynb)浏览教程,或者直接在 Colab 上[运行](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/main/demo/MMSegmentation_Tutorial.ipynb)。 -若需要将0.x版本的代码迁移至新版,请参考[迁移文档](docs/zh_cn/migration)。 +若需要将 0.x 版本的代码迁移至新版,请参考[迁移文档](docs/zh_cn/migration)。 ## 基准测试和模型库 @@ -168,23 +168,23 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
已支持的数据集: -- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#cityscapes) -- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#pascal-voc) -- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#ade20k) -- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#pascal-context) -- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#coco-stuff-10k) -- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#coco-stuff-164k) -- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#chase-db1) -- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#drive) -- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#hrf) -- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#stare) -- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#dark-zurich) -- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#nighttime-driving) -- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#loveda) -- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#isprs-potsdam) -- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#isprs-vaihingen) -- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/zh_cn/dataset_prepare.md#isaid) -- [x] [Mapillary Vistas](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#mapillary-vistas-datasets) +- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#cityscapes) +- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#pascal-voc) +- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#ade20k) +- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#pascal-context) +- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#coco-stuff-10k) +- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#coco-stuff-164k) +- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#chase-db1) +- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#drive) +- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#hrf) +- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#stare) +- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#dark-zurich) +- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#nighttime-driving) +- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#loveda) +- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#isprs-potsdam) +- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#isprs-vaihingen) +- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#isaid) +- [x] [Mapillary Vistas](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#mapillary-vistas-datasets)