parent
0c31afe9eb
commit
b81894636b
|
@ -62,3 +62,25 @@ python tools/pytorch2onnx.py ${CONFIG_FILE} --checkpoint ${CHECKPOINT_FILE} --ou
|
|||
```shell
|
||||
python tools/print_config.py ${CONFIG} [-h] [--options ${OPTIONS [OPTIONS...]}]
|
||||
```
|
||||
|
||||
### Plot training logs
|
||||
|
||||
`tools/analyze_logs.py` plot s loss/mIoU curves given a training log file. `pip install seaborn` first to install the dependency.
|
||||
|
||||
```shell
|
||||
python tools/analyze_logs.py xxx.log.json [--keys ${KEYS}] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}]
|
||||
```
|
||||
|
||||
Examples:
|
||||
|
||||
- Plot the mIoU, mAcc, aAcc metrics.
|
||||
|
||||
```shell
|
||||
python tools/analyze_logs.py log.json --keys mIoU mAcc aAcc --legend mIoU mAcc aAcc
|
||||
```
|
||||
|
||||
- Plot loss metric.
|
||||
|
||||
```shell
|
||||
python tools/analyze_logs.py log.json --keys loss --legend loss
|
||||
```
|
||||
|
|
|
@ -8,6 +8,6 @@ line_length = 79
|
|||
multi_line_output = 0
|
||||
known_standard_library = setuptools
|
||||
known_first_party = mmseg
|
||||
known_third_party = PIL,cityscapesscripts,cv2,detail,matplotlib,mmcv,numpy,onnxruntime,oss2,pytest,scipy,terminaltables,torch
|
||||
known_third_party = PIL,cityscapesscripts,cv2,detail,matplotlib,mmcv,numpy,onnxruntime,oss2,pytest,scipy,seaborn,terminaltables,torch
|
||||
no_lines_before = STDLIB,LOCALFOLDER
|
||||
default_section = THIRDPARTY
|
||||
|
|
|
@ -0,0 +1,123 @@
|
|||
"""Modified from https://github.com/open-
|
||||
mmlab/mmdetection/blob/master/tools/analysis_tools/analyze_logs.py."""
|
||||
import argparse
|
||||
import json
|
||||
from collections import defaultdict
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
|
||||
|
||||
def plot_curve(log_dicts, args):
|
||||
if args.backend is not None:
|
||||
plt.switch_backend(args.backend)
|
||||
sns.set_style(args.style)
|
||||
# if legend is None, use {filename}_{key} as legend
|
||||
legend = args.legend
|
||||
if legend is None:
|
||||
legend = []
|
||||
for json_log in args.json_logs:
|
||||
for metric in args.keys:
|
||||
legend.append(f'{json_log}_{metric}')
|
||||
assert len(legend) == (len(args.json_logs) * len(args.keys))
|
||||
metrics = args.keys
|
||||
|
||||
num_metrics = len(metrics)
|
||||
for i, log_dict in enumerate(log_dicts):
|
||||
epochs = list(log_dict.keys())
|
||||
for j, metric in enumerate(metrics):
|
||||
print(f'plot curve of {args.json_logs[i]}, metric is {metric}')
|
||||
plot_epochs = []
|
||||
plot_iters = []
|
||||
plot_values = []
|
||||
for epoch in epochs:
|
||||
epoch_logs = log_dict[epoch]
|
||||
if metric not in epoch_logs.keys():
|
||||
continue
|
||||
if metric in ['mIoU', 'mAcc', 'aAcc']:
|
||||
plot_epochs.append(epoch)
|
||||
plot_values.append(epoch_logs[metric][0])
|
||||
else:
|
||||
for idx in range(len(epoch_logs[metric])):
|
||||
plot_iters.append(epoch_logs['iter'][idx])
|
||||
plot_values.append(epoch_logs[metric][idx])
|
||||
ax = plt.gca()
|
||||
label = legend[i * num_metrics + j]
|
||||
if metric in ['mIoU', 'mAcc', 'aAcc']:
|
||||
ax.set_xticks(plot_epochs)
|
||||
plt.xlabel('epoch')
|
||||
plt.plot(plot_epochs, plot_values, label=label, marker='o')
|
||||
else:
|
||||
plt.xlabel('iter')
|
||||
plt.plot(plot_iters, plot_values, label=label, linewidth=0.5)
|
||||
plt.legend()
|
||||
if args.title is not None:
|
||||
plt.title(args.title)
|
||||
if args.out is None:
|
||||
plt.show()
|
||||
else:
|
||||
print(f'save curve to: {args.out}')
|
||||
plt.savefig(args.out)
|
||||
plt.cla()
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='Analyze Json Log')
|
||||
parser.add_argument(
|
||||
'json_logs',
|
||||
type=str,
|
||||
nargs='+',
|
||||
help='path of train log in json format')
|
||||
parser.add_argument(
|
||||
'--keys',
|
||||
type=str,
|
||||
nargs='+',
|
||||
default=['mIoU'],
|
||||
help='the metric that you want to plot')
|
||||
parser.add_argument('--title', type=str, help='title of figure')
|
||||
parser.add_argument(
|
||||
'--legend',
|
||||
type=str,
|
||||
nargs='+',
|
||||
default=None,
|
||||
help='legend of each plot')
|
||||
parser.add_argument(
|
||||
'--backend', type=str, default=None, help='backend of plt')
|
||||
parser.add_argument(
|
||||
'--style', type=str, default='dark', help='style of plt')
|
||||
parser.add_argument('--out', type=str, default=None)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def load_json_logs(json_logs):
|
||||
# load and convert json_logs to log_dict, key is epoch, value is a sub dict
|
||||
# keys of sub dict is different metrics
|
||||
# value of sub dict is a list of corresponding values of all iterations
|
||||
log_dicts = [dict() for _ in json_logs]
|
||||
for json_log, log_dict in zip(json_logs, log_dicts):
|
||||
with open(json_log, 'r') as log_file:
|
||||
for line in log_file:
|
||||
log = json.loads(line.strip())
|
||||
# skip lines without `epoch` field
|
||||
if 'epoch' not in log:
|
||||
continue
|
||||
epoch = log.pop('epoch')
|
||||
if epoch not in log_dict:
|
||||
log_dict[epoch] = defaultdict(list)
|
||||
for k, v in log.items():
|
||||
log_dict[epoch][k].append(v)
|
||||
return log_dicts
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
json_logs = args.json_logs
|
||||
for json_log in json_logs:
|
||||
assert json_log.endswith('.json')
|
||||
log_dicts = load_json_logs(json_logs)
|
||||
plot_curve(log_dicts, args)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue