support load v1/v2 ckpt (#1868)

This commit is contained in:
谢昕辰 2022-08-05 20:18:55 +08:00 committed by MeowZheng
parent 167f94a70b
commit bfe0fbe04d

View File

@ -1,45 +1,85 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Sequence, Union
import warnings
from pathlib import Path
from typing import Optional, Sequence, Union
import mmcv
import numpy as np
import torch
from mmcv.runner import load_checkpoint
from mmengine import Config
from mmengine.dataset import Compose
from mmengine.runner import load_checkpoint
from mmseg.data import SegDataSample
from mmseg.models import BaseSegmentor
from mmseg.registry import MODELS
from mmseg.structures import SegDataSample
from mmseg.utils import SampleList
from mmseg.utils import SampleList, dataset_aliases, get_classes, get_palette
from mmseg.visualization import SegLocalVisualizer
def init_model(config, checkpoint=None, device='cuda:0'):
def init_model(config: Union[str, Path, Config],
checkpoint: Optional[str] = None,
device: str = 'cuda:0',
cfg_options: Optional[dict] = None):
"""Initialize a segmentor from config file.
Args:
config (str or :obj:`mmcv.Config`): Config file path or the config
object.
config (str, :obj:`Path`, or :obj:`mmengine.Config`): Config file path,
:obj:`Path`, or the config object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
device (str, optional) CPU/CUDA device option. Default 'cuda:0'.
Use 'cpu' for loading model on CPU.
cfg_options (dict, optional): Options to override some settings in
the used config.
Returns:
nn.Module: The constructed segmentor.
"""
if isinstance(config, str):
if isinstance(config, (str, Path)):
config = Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
elif not isinstance(config, Config):
raise TypeError('config must be a filename or Config object, '
'but got {}'.format(type(config)))
if cfg_options is not None:
config.merge_from_dict(cfg_options)
elif 'init_cfg' in config.model.backbone:
config.model.backbone.init_cfg = None
config.model.pretrained = None
config.model.train_cfg = None
model = MODELS.build(config.model)
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
model.CLASSES = checkpoint['meta']['CLASSES']
model.PALETTE = checkpoint['meta']['PALETTE']
dataset_meta = checkpoint['meta'].get('dataset_meta', None)
# save the dataset_meta in the model for convenience
if 'dataset_meta' in checkpoint.get('meta', {}):
# mmseg 1.x
model.dataset_meta = dataset_meta
elif 'CLASSES' in checkpoint.get('meta', {}):
# < mmseg 1.x
classes = checkpoint['meta']['CLASSES']
palette = checkpoint['meta']['PALETTE']
model.dataset_meta = {'classes': classes, 'palette': palette}
else:
warnings.simplefilter('once')
warnings.warn(
'dataset_meta or class names are not saved in the '
'checkpoint\'s meta data, classes and palette will be'
'set according to num_classes ')
num_classes = model.decode_head.num_classes
dataset_name = None
for name in dataset_aliases.keys():
if len(get_classes(name)) == num_classes:
dataset_name = name
break
if dataset_name is None:
warnings.warn(
'No suitable dataset found, use Cityscapes by default')
dataset_name = 'cityscapes'
model.dataset_meta = {
'classes': get_classes(dataset_name),
'palette': get_palette(dataset_name)
}
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()