Adjust vision transformer backbone architectures (#524)

* Adjust vision transformer backbone architectures;

* Add DropPath, trunc_normal_ for VisionTransformer implementation;

* Add class token buring intermediate period and remove it during final period;

* Fix some parameters loss bug;

* * Store intermediate token features and impose no processes on them;

* Remove class token and reshape entire token feature from NLC to NCHW;

* Fix some doc error

* Add a arg for VisionTransformer backbone to control if input class token into transformer;

* Add stochastic depth decay rule for DropPath;

* * Fix output bug when input_cls_token=False;

* Add related unit test;

* * Add arg: out_indices to control model output;

* Add unit test for DropPath;

* Apply suggestions from code review

Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com>
This commit is contained in:
sennnnn 2021-05-01 01:37:47 +08:00 committed by GitHub
parent 771ca7d3e0
commit c27ef91942
6 changed files with 243 additions and 47 deletions

View File

@ -8,12 +8,13 @@ import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from mmcv.cnn import (Conv2d, Linear, build_activation_layer, build_norm_layer,
constant_init, kaiming_init, normal_init, xavier_init)
constant_init, kaiming_init, normal_init)
from mmcv.runner import _load_checkpoint
from mmcv.utils.parrots_wrapper import _BatchNorm
from mmseg.utils import get_root_logger
from ..builder import BACKBONES
from ..utils import DropPath, trunc_normal_
class Mlp(nn.Module):
@ -114,10 +115,14 @@ class Block(nn.Module):
Default: 0.
proj_drop (float): Drop rate for attn layer output weights.
Default: 0.
drop_path (float): Drop rate for paths of model.
Default: 0.
act_cfg (dict): Config dict for activation layer.
Default: dict(type='GELU').
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN', requires_grad=True).
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
"""
def __init__(self,
@ -129,14 +134,17 @@ class Block(nn.Module):
drop=0.,
attn_drop=0.,
proj_drop=0.,
drop_path=0.,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='LN'),
norm_cfg=dict(type='LN', eps=1e-6),
with_cp=False):
super(Block, self).__init__()
self.with_cp = with_cp
_, self.norm1 = build_norm_layer(norm_cfg, dim)
self.attn = Attention(dim, num_heads, qkv_bias, qk_scale, attn_drop,
proj_drop)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
_, self.norm2 = build_norm_layer(norm_cfg, dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
@ -148,8 +156,8 @@ class Block(nn.Module):
def forward(self, x):
def _inner_forward(x):
out = x + self.attn(self.norm1(x))
out = out + self.mlp(self.norm2(out))
out = x + self.drop_path(self.attn(self.norm1(x)))
out = out + self.drop_path(self.mlp(self.norm2(out)))
return out
if self.with_cp and x.requires_grad:
@ -164,7 +172,7 @@ class PatchEmbed(nn.Module):
"""Image to Patch Embedding.
Args:
img_size (int tuple): Input image size.
img_size (int | tuple): Input image size.
default: 224.
patch_size (int): Width and height for a patch.
default: 16.
@ -202,24 +210,34 @@ class VisionTransformer(nn.Module):
Image Recognition at Scale` - https://arxiv.org/abs/2010.11929
Args:
img_size (tuple): input image size. Default: (224, 224.
img_size (tuple): input image size. Default: (224, 224).
patch_size (int, tuple): patch size. Default: 16.
in_channels (int): number of input channels. Default: 3.
embed_dim (int): embedding dimension. Default: 768.
depth (int): depth of transformer. Default: 12.
num_heads (int): number of attention heads. Default: 12.
mlp_ratio (int): ratio of mlp hidden dim to embedding dim. Default: 4.
mlp_ratio (int): ratio of mlp hidden dim to embedding dim.
Default: 4.
out_indices (list | tuple | int): Output from which stages.
Default: -1.
qkv_bias (bool): enable bias for qkv if True. Default: True.
qk_scale (float): override default qk scale of head_dim ** -0.5 if set.
drop_rate (float): dropout rate. Default: 0.
attn_drop_rate (float): attention dropout rate. Default: 0.
drop_path_rate (float): Rate of DropPath. Default: 0.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN', requires_grad=True).
Default: dict(type='LN', eps=1e-6, requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='GELU').
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
final_norm (bool): Whether to add a additional layer to normalize
final feature map. Default: False.
interpolate_mode (str): Select the interpolate mode for position
embeding vector resize. Default: bicubic.
with_cls_token (bool): If concatenating class token into image tokens
as transformer input. Default: True.
with_cp (bool): Use checkpoint or not. Using checkpoint
will save some memory while slowing down the training speed.
Default: False.
@ -233,13 +251,18 @@ class VisionTransformer(nn.Module):
depth=12,
num_heads=12,
mlp_ratio=4,
out_indices=11,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
norm_cfg=dict(type='LN'),
drop_path_rate=0.,
norm_cfg=dict(type='LN', eps=1e-6, requires_grad=True),
act_cfg=dict(type='GELU'),
norm_eval=False,
final_norm=False,
with_cls_token=True,
interpolate_mode='bicubic',
with_cp=False):
super(VisionTransformer, self).__init__()
self.img_size = img_size
@ -251,24 +274,39 @@ class VisionTransformer(nn.Module):
in_channels=in_channels,
embed_dim=embed_dim)
self.with_cls_token = with_cls_token
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
self.pos_embed = nn.Parameter(
torch.zeros(1, self.patch_embed.num_patches, embed_dim))
torch.zeros(1, self.patch_embed.num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
self.blocks = nn.Sequential(*[
if isinstance(out_indices, int):
self.out_indices = [out_indices]
elif isinstance(out_indices, list) or isinstance(out_indices, tuple):
self.out_indices = out_indices
else:
raise TypeError('out_indices must be type of int, list or tuple')
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
drop=dpr[i],
attn_drop=attn_drop_rate,
act_cfg=act_cfg,
norm_cfg=norm_cfg,
with_cp=with_cp) for i in range(depth)
])
_, self.norm = build_norm_layer(norm_cfg, embed_dim)
self.interpolate_mode = interpolate_mode
self.final_norm = final_norm
if final_norm:
_, self.norm = build_norm_layer(norm_cfg, embed_dim)
self.norm_eval = norm_eval
self.with_cp = with_cp
@ -283,28 +321,26 @@ class VisionTransformer(nn.Module):
state_dict = checkpoint
if 'pos_embed' in state_dict.keys():
state_dict['pos_embed'] = state_dict['pos_embed'][:, 1:, :]
logger.info(
msg='Remove the "cls_token" dimension from the checkpoint')
if self.pos_embed.shape != state_dict['pos_embed'].shape:
logger.info(msg=f'Resize the pos_embed shape from \
{state_dict["pos_embed"].shape} to \
{self.pos_embed.shape}')
{state_dict["pos_embed"].shape} to {self.pos_embed.shape}')
h, w = self.img_size
pos_size = int(math.sqrt(state_dict['pos_embed'].shape[1]))
pos_size = int(
math.sqrt(state_dict['pos_embed'].shape[1] - 1))
state_dict['pos_embed'] = self.resize_pos_embed(
state_dict['pos_embed'], (h, w), (pos_size, pos_size),
self.patch_size)
self.patch_size, self.interpolate_mode)
self.load_state_dict(state_dict, False)
elif pretrained is None:
# We only implement the 'jax_impl' initialization implemented at
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L353 # noqa: E501
normal_init(self.pos_embed)
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
for n, m in self.named_modules():
if isinstance(m, Linear):
xavier_init(m.weight, distribution='uniform')
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
if 'mlp' in n:
normal_init(m.bias, std=1e-6)
@ -316,7 +352,7 @@ class VisionTransformer(nn.Module):
constant_init(m.bias, 0)
elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)):
constant_init(m.bias, 0)
constant_init(m.weight, 1)
constant_init(m.weight, 1.0)
else:
raise TypeError('pretrained must be a str or None')
@ -340,7 +376,7 @@ class VisionTransformer(nn.Module):
x_len, pos_len = patched_img.shape[1], pos_embed.shape[1]
if x_len != pos_len:
if pos_len == (self.img_size[0] // self.patch_size) * (
self.img_size[1] // self.patch_size):
self.img_size[1] // self.patch_size) + 1:
pos_h = self.img_size[0] // self.patch_size
pos_w = self.img_size[1] // self.patch_size
else:
@ -348,11 +384,12 @@ class VisionTransformer(nn.Module):
'Unexpected shape of pos_embed, got {}.'.format(
pos_embed.shape))
pos_embed = self.resize_pos_embed(pos_embed, img.shape[2:],
(pos_h, pos_w), self.patch_size)
return patched_img + pos_embed
(pos_h, pos_w), self.patch_size,
self.interpolate_mode)
return self.pos_drop(patched_img + pos_embed)
@staticmethod
def resize_pos_embed(pos_embed, input_shpae, pos_shape, patch_size):
def resize_pos_embed(pos_embed, input_shpae, pos_shape, patch_size, mode):
"""Resize pos_embed weights.
Resize pos_embed using bicubic interpolate method.
@ -367,26 +404,52 @@ class VisionTransformer(nn.Module):
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
input_h, input_w = input_shpae
pos_h, pos_w = pos_shape
pos_embed = pos_embed.reshape(1, pos_h, pos_w,
pos_embed.shape[2]).permute(0, 3, 1, 2)
pos_embed = F.interpolate(
pos_embed,
cls_token_weight = pos_embed[:, 0]
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
pos_embed_weight = pos_embed_weight.reshape(
1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2)
pos_embed_weight = F.interpolate(
pos_embed_weight,
size=[input_h // patch_size, input_w // patch_size],
align_corners=False,
mode='bicubic')
pos_embed = torch.flatten(pos_embed, 2).transpose(1, 2)
mode=mode)
cls_token_weight = cls_token_weight.unsqueeze(1)
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2)
pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
return pos_embed
def forward(self, inputs):
B = inputs.shape[0]
x = self.patch_embed(inputs)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = self._pos_embeding(inputs, x, self.pos_embed)
x = self.blocks(x)
x = self.norm(x)
B, _, C = x.shape
x = x.reshape(B, inputs.shape[2] // self.patch_size,
inputs.shape[3] // self.patch_size,
C).permute(0, 3, 1, 2)
return [x]
if not self.with_cls_token:
# Remove class token for transformer input
x = x[:, 1:]
outs = []
for i, blk in enumerate(self.blocks):
x = blk(x)
if i == len(self.blocks) - 1:
if self.final_norm:
x = self.norm(x)
if i in self.out_indices:
if self.with_cls_token:
# Remove class token and reshape token for decoder head
out = x[:, 1:]
else:
out = x
B, _, C = out.shape
out = out.reshape(B, inputs.shape[2] // self.patch_size,
inputs.shape[3] // self.patch_size,
C).permute(0, 3, 1, 2)
outs.append(out)
return tuple(outs)
def train(self, mode=True):
super(VisionTransformer, self).train(mode)

View File

@ -1,11 +1,13 @@
from .drop import DropPath
from .inverted_residual import InvertedResidual, InvertedResidualV3
from .make_divisible import make_divisible
from .res_layer import ResLayer
from .se_layer import SELayer
from .self_attention_block import SelfAttentionBlock
from .up_conv_block import UpConvBlock
from .weight_init import trunc_normal_
__all__ = [
'ResLayer', 'SelfAttentionBlock', 'make_divisible', 'InvertedResidual',
'UpConvBlock', 'InvertedResidualV3', 'SELayer'
'UpConvBlock', 'InvertedResidualV3', 'SELayer', 'DropPath', 'trunc_normal_'
]

View File

@ -0,0 +1,31 @@
"""Modified from https://github.com/rwightman/pytorch-image-
models/blob/master/timm/models/layers/drop.py."""
import torch
from torch import nn
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of
residual blocks).
Args:
drop_prob (float): Drop rate for paths of model. Dropout rate has
to be between 0 and 1. Default: 0.
"""
def __init__(self, drop_prob=0.):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.keep_prob = 1 - drop_prob
def forward(self, x):
if self.drop_prob == 0. or not self.training:
return x
shape = (x.shape[0], ) + (1, ) * (
x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = self.keep_prob + torch.rand(
shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(self.keep_prob) * random_tensor
return output

View File

@ -0,0 +1,62 @@
"""Modified from https://github.com/rwightman/pytorch-image-
models/blob/master/timm/models/layers/drop.py."""
import math
import warnings
import torch
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
"""Reference: https://people.sc.fsu.edu/~jburkardt/presentations
/truncated_normal.pdf"""
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
'mean is more than 2 std from [a, b] in nn.init.trunc_normal_. '
'The distribution of values may be incorrect.',
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
lower_bound = norm_cdf((a - mean) / std)
upper_bound = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * lower_bound - 1, 2 * upper_bound - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor (``torch.Tensor``): an n-dimensional `torch.Tensor`
mean (float): the mean of the normal distribution
std (float): the standard deviation of the normal distribution
a (float): the minimum cutoff value
b (float): the maximum cutoff value
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)

View File

@ -15,10 +15,14 @@ def test_vit_backbone():
# img_size must be int or tuple
model = VisionTransformer(img_size=512.0)
with pytest.raises(TypeError):
# out_indices must be int ,list or tuple
model = VisionTransformer(out_indices=1.)
with pytest.raises(TypeError):
# test upsample_pos_embed function
x = torch.randn(1, 196)
VisionTransformer.resize_pos_embed(x, 512, 512, 224, 224)
VisionTransformer.resize_pos_embed(x, 512, 512, 224, 224, 'bilinear')
with pytest.raises(RuntimeError):
# forward inputs must be [N, C, H, W]
@ -46,19 +50,25 @@ def test_vit_backbone():
# Test large size input image
imgs = torch.randn(1, 3, 256, 256)
feat = model(imgs)
assert feat[0].shape == (1, 768, 16, 16)
assert feat[-1].shape == (1, 768, 16, 16)
# Test small size input image
imgs = torch.randn(1, 3, 32, 32)
feat = model(imgs)
assert feat[0].shape == (1, 768, 2, 2)
assert feat[-1].shape == (1, 768, 2, 2)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[0].shape == (1, 768, 14, 14)
assert feat[-1].shape == (1, 768, 14, 14)
# Test with_cp=True
model = VisionTransformer(with_cp=True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[0].shape == (1, 768, 14, 14)
assert feat[-1].shape == (1, 768, 14, 14)
# Test with_cls_token=False
model = VisionTransformer(with_cls_token=False)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 14, 14)

View File

@ -0,0 +1,28 @@
import torch
from mmseg.models.utils import DropPath
def test_drop_path():
# zero drop
layer = DropPath()
# input NLC format feature
x = torch.randn((1, 16, 32))
layer(x)
# input NLHW format feature
x = torch.randn((1, 32, 4, 4))
layer(x)
# non-zero drop
layer = DropPath(0.1)
# input NLC format feature
x = torch.randn((1, 16, 32))
layer(x)
# input NLHW format feature
x = torch.randn((1, 32, 4, 4))
layer(x)