Merge pull request #2290 from xiexinch/fix_gt_padding

[Enhancement] Support padding in testing
This commit is contained in:
Miao Zheng 2022-11-19 18:24:59 +08:00 committed by GitHub
commit c56a299571
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 48 additions and 13 deletions

View File

@ -48,18 +48,24 @@ class SegDataPreProcessor(BaseDataPreprocessor):
rgb_to_bgr (bool): whether to convert image from RGB to RGB.
Defaults to False.
batch_augments (list[dict], optional): Batch-level augmentations
test_cfg (dict, optional): The padding size config in testing, if not
specify, will use `size` and `size_divisor` params as default.
Defaults to None, only supports keys `size` or `size_divisor`.
"""
def __init__(self,
mean: Sequence[Number] = None,
std: Sequence[Number] = None,
size: Optional[tuple] = None,
size_divisor: Optional[int] = None,
pad_val: Number = 0,
seg_pad_val: Number = 255,
bgr_to_rgb: bool = False,
rgb_to_bgr: bool = False,
batch_augments: Optional[List[dict]] = None):
def __init__(
self,
mean: Sequence[Number] = None,
std: Sequence[Number] = None,
size: Optional[tuple] = None,
size_divisor: Optional[int] = None,
pad_val: Number = 0,
seg_pad_val: Number = 255,
bgr_to_rgb: bool = False,
rgb_to_bgr: bool = False,
batch_augments: Optional[List[dict]] = None,
test_cfg: dict = None,
):
super().__init__()
self.size = size
self.size_divisor = size_divisor
@ -86,6 +92,9 @@ class SegDataPreProcessor(BaseDataPreprocessor):
# TODO: support batch augmentations.
self.batch_augments = batch_augments
# Support different padding methods in testing
self.test_cfg = test_cfg
def forward(self, data: dict, training: bool = False) -> Dict[str, Any]:
"""Perform normalization、padding and bgr2rgb conversion based on
``BaseDataPreprocessor``.
@ -122,10 +131,19 @@ class SegDataPreProcessor(BaseDataPreprocessor):
if self.batch_augments is not None:
inputs, data_samples = self.batch_augments(
inputs, data_samples)
return dict(inputs=inputs, data_samples=data_samples)
else:
assert len(inputs) == 1, (
'Batch inference is not support currently, '
'as the image size might be different in a batch')
return dict(
inputs=torch.stack(inputs, dim=0), data_samples=data_samples)
# pad images when testing
if self.test_cfg:
inputs, _ = stack_batch(
inputs=inputs,
size=self.test_cfg.get('size', None),
size_divisor=self.test_cfg.get('size_divisor', None),
pad_val=self.pad_val,
seg_pad_val=self.seg_pad_val)
else:
inputs = torch.stack(inputs, dim=0)
return dict(inputs=inputs, data_samples=data_samples)

View File

@ -165,6 +165,7 @@ class BaseSegmentor(BaseModel, metaclass=ABCMeta):
i_seg_logits = seg_logits[i:i + 1, :,
padding_top:H - padding_bottom,
padding_left:W - padding_right]
# resize as original shape
i_seg_logits = resize(
i_seg_logits,

View File

@ -46,3 +46,19 @@ class TestSegDataPreProcessor(TestCase):
out = processor(data, training=True)
self.assertEqual(out['inputs'].shape, (2, 3, 20, 20))
self.assertEqual(len(out['data_samples']), 2)
# test predict with padding
processor = SegDataPreProcessor(
mean=[0, 0, 0],
std=[1, 1, 1],
size=(20, 20),
test_cfg=dict(size_divisor=15))
data = {
'inputs': [
torch.randint(0, 256, (3, 11, 10)),
],
'data_samples': [data_sample]
}
out = processor(data, training=False)
self.assertEqual(out['inputs'].shape[2] % 15, 0)
self.assertEqual(out['inputs'].shape[3] % 15, 0)