mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Refactor] Refacor default_hooks and train & val & test loops in configs
This commit is contained in:
parent
80bb004bbb
commit
c84a58b7b5
@ -1,14 +1,9 @@
|
||||
# yapf:disable
|
||||
log_config = dict(
|
||||
interval=50,
|
||||
hooks=[
|
||||
dict(type='TextLoggerHook', by_epoch=False),
|
||||
# dict(type='TensorboardLoggerHook')
|
||||
])
|
||||
# yapf:enable
|
||||
dist_params = dict(backend='nccl')
|
||||
default_scope = 'mmseg'
|
||||
env_cfg = dict(
|
||||
cudnn_benchmark=True,
|
||||
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
||||
dist_cfg=dict(backend='nccl'),
|
||||
)
|
||||
log_level = 'INFO'
|
||||
load_from = None
|
||||
resume_from = None
|
||||
workflow = [('train', 1)]
|
||||
cudnn_benchmark = True
|
||||
resume = False
|
||||
|
@ -1,9 +1,19 @@
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optimizer_config = dict()
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
# learning policy
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
||||
# runtime settings
|
||||
runner = dict(type='IterBasedRunner', max_iters=160000)
|
||||
checkpoint_config = dict(by_epoch=False, interval=16000)
|
||||
# training schedule for 160k
|
||||
train_cfg = dict(
|
||||
type='IterBasedTrainLoop', max_iters=160000, val_interval=16000)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
evaluation = dict(interval=16000, metric='mIoU', pre_eval=True)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
||||
timer=dict(type='IterTimerHook'),
|
||||
logger=dict(type='LoggerHook', interval=50),
|
||||
param_scheduler=dict(type='ParamSchedulerHook'),
|
||||
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=16000),
|
||||
sampler_seed=dict(type='DistSamplerSeedHook'),
|
||||
)
|
||||
|
@ -1,9 +1,18 @@
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optimizer_config = dict()
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
# learning policy
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
||||
# runtime settings
|
||||
runner = dict(type='IterBasedRunner', max_iters=20000)
|
||||
checkpoint_config = dict(by_epoch=False, interval=2000)
|
||||
# training schedule for 20k
|
||||
train_cfg = dict(type='IterBasedTrainLoop', max_iters=20000, val_interval=2000)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
evaluation = dict(interval=2000, metric='mIoU', pre_eval=True)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
||||
timer=dict(type='IterTimerHook'),
|
||||
logger=dict(type='LoggerHook', interval=50),
|
||||
param_scheduler=dict(type='ParamSchedulerHook'),
|
||||
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=2000),
|
||||
sampler_seed=dict(type='DistSamplerSeedHook'),
|
||||
)
|
||||
|
@ -1,9 +1,19 @@
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optimizer_config = dict()
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
# learning policy
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
||||
# runtime settings
|
||||
runner = dict(type='IterBasedRunner', max_iters=320000)
|
||||
checkpoint_config = dict(by_epoch=False, interval=32000)
|
||||
# training schedule for 320k
|
||||
train_cfg = dict(
|
||||
type='IterBasedTrainLoop', max_iters=320000, val_interval=32000)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
evaluation = dict(interval=32000, metric='mIoU')
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
||||
timer=dict(type='IterTimerHook'),
|
||||
logger=dict(type='LoggerHook', interval=50),
|
||||
param_scheduler=dict(type='ParamSchedulerHook'),
|
||||
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=32000),
|
||||
sampler_seed=dict(type='DistSamplerSeedHook'),
|
||||
)
|
||||
|
@ -1,9 +1,18 @@
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optimizer_config = dict()
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
# learning policy
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
||||
# runtime settings
|
||||
runner = dict(type='IterBasedRunner', max_iters=40000)
|
||||
checkpoint_config = dict(by_epoch=False, interval=4000)
|
||||
# training schedule for 40k
|
||||
train_cfg = dict(type='IterBasedTrainLoop', max_iters=40000, val_interval=4000)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
evaluation = dict(interval=4000, metric='mIoU', pre_eval=True)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
||||
timer=dict(type='IterTimerHook'),
|
||||
logger=dict(type='LoggerHook', interval=50),
|
||||
param_scheduler=dict(type='ParamSchedulerHook'),
|
||||
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=4000),
|
||||
sampler_seed=dict(type='DistSamplerSeedHook'),
|
||||
)
|
||||
|
@ -1,9 +1,18 @@
|
||||
# optimizer
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optimizer_config = dict()
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
# learning policy
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
||||
# runtime settings
|
||||
runner = dict(type='IterBasedRunner', max_iters=80000)
|
||||
checkpoint_config = dict(by_epoch=False, interval=8000)
|
||||
# training schedule for 80k
|
||||
train_cfg = dict(type='IterBasedTrainLoop', max_iters=80000, val_interval=8000)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
evaluation = dict(interval=8000, metric='mIoU', pre_eval=True)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
||||
timer=dict(type='IterTimerHook'),
|
||||
logger=dict(type='LoggerHook', interval=50),
|
||||
param_scheduler=dict(type='ParamSchedulerHook'),
|
||||
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=8000),
|
||||
sampler_seed=dict(type='DistSamplerSeedHook'),
|
||||
)
|
||||
|
@ -12,7 +12,11 @@ optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=3e-5,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.05,
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
constructor='LayerDecayOptimizerConstructor',
|
||||
paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.9))
|
||||
|
||||
|
@ -26,10 +26,13 @@ optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=2e-5,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.05,
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
constructor='LayerDecayOptimizerConstructor',
|
||||
paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.95))
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
|
@ -15,4 +15,8 @@ model = dict(
|
||||
dict(in_channels=512, channels=256, num_classes=171),
|
||||
])
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
optimizer = dict(lr=0.005)
|
||||
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -4,7 +4,8 @@ _base_ = [
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||
]
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
optimizer = dict(lr=0.025)
|
||||
optimizer = dict(type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -9,7 +9,8 @@ model = dict(
|
||||
init_cfg=dict(
|
||||
type='Pretrained', checkpoint='open-mmlab://resnet18_v1c'))))
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
optimizer = dict(lr=0.025)
|
||||
optimizer = dict(type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -10,4 +10,5 @@ model = dict(
|
||||
dict(num_classes=171),
|
||||
])
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
optimizer = dict(lr=0.005)
|
||||
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
|
@ -35,7 +35,8 @@ model = dict(
|
||||
concat_input=False),
|
||||
])
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
optimizer = dict(lr=0.05)
|
||||
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -15,4 +15,5 @@ model = dict(
|
||||
dict(in_channels=512, channels=256, num_classes=171),
|
||||
])
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
optimizer = dict(lr=0.005)
|
||||
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
|
@ -4,7 +4,8 @@ _base_ = [
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||
]
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
optimizer = dict(lr=0.05)
|
||||
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -4,7 +4,8 @@ _base_ = [
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||
]
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
optimizer = dict(lr=0.05)
|
||||
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=8, num_workers=4)
|
||||
val_dataloader = dict(batch_size=8, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -1,5 +1,5 @@
|
||||
_base_ = './bisenetv2_fcn_4x4_1024x1024_160k_cityscapes.py'
|
||||
# fp16 settings
|
||||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512.)
|
||||
default_hooks = dict(optimizer=dict(type='Fp16OptimizerHook', loss_scale=512.))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -3,9 +3,68 @@ _base_ = [
|
||||
'../_base_/datasets/cityscapes_1024x1024.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||
]
|
||||
sampler = dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000)
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
models = dict(
|
||||
decode_head=dict(
|
||||
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000)),
|
||||
auxiliary_head=[
|
||||
dict(
|
||||
type='FCNHead',
|
||||
in_channels=16,
|
||||
channels=16,
|
||||
num_convs=2,
|
||||
num_classes=19,
|
||||
in_index=1,
|
||||
norm_cfg=norm_cfg,
|
||||
concat_input=False,
|
||||
align_corners=False,
|
||||
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000),
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
dict(
|
||||
type='FCNHead',
|
||||
in_channels=32,
|
||||
channels=64,
|
||||
num_convs=2,
|
||||
num_classes=19,
|
||||
in_index=2,
|
||||
norm_cfg=norm_cfg,
|
||||
concat_input=False,
|
||||
align_corners=False,
|
||||
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000),
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
dict(
|
||||
type='FCNHead',
|
||||
in_channels=64,
|
||||
channels=256,
|
||||
num_convs=2,
|
||||
num_classes=19,
|
||||
in_index=3,
|
||||
norm_cfg=norm_cfg,
|
||||
concat_input=False,
|
||||
align_corners=False,
|
||||
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000),
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
dict(
|
||||
type='FCNHead',
|
||||
in_channels=128,
|
||||
channels=1024,
|
||||
num_convs=2,
|
||||
num_classes=19,
|
||||
in_index=4,
|
||||
norm_cfg=norm_cfg,
|
||||
concat_input=False,
|
||||
align_corners=False,
|
||||
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000),
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
],
|
||||
)
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
optimizer = dict(lr=0.05)
|
||||
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -2,12 +2,16 @@ _base_ = ['../_base_/models/cgnet.py', '../_base_/default_runtime.py']
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(type='Adam', lr=0.001, eps=1e-08, weight_decay=0.0005)
|
||||
optimizer_config = dict()
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
# learning policy
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
||||
# runtime settings
|
||||
total_iters = 60000
|
||||
checkpoint_config = dict(by_epoch=False, interval=4000)
|
||||
train_cfg = dict(
|
||||
type='IterBasedTrainLoop', max_iters=total_iters, val_interval=4000)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
default_hooks = dict(checkpoint=dict(by_epoch=False, interval=4000))
|
||||
evaluation = dict(interval=4000, metric='mIoU')
|
||||
|
||||
# dataset settings
|
||||
|
@ -5,12 +5,16 @@ _base_ = [
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(type='Adam', lr=0.001, eps=1e-08, weight_decay=0.0005)
|
||||
optimizer_config = dict()
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
# learning policy
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
||||
# runtime settings
|
||||
total_iters = 60000
|
||||
checkpoint_config = dict(by_epoch=False, interval=4000)
|
||||
train_cfg = dict(
|
||||
type='IterBasedTrainLoop', max_iters=total_iters, val_interval=4000)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
default_hooks = dict(checkpoint=dict(by_epoch=False, interval=4000))
|
||||
evaluation = dict(interval=4000, metric='mIoU')
|
||||
|
||||
img_norm_cfg = dict(
|
||||
|
@ -10,17 +10,21 @@ model = dict(
|
||||
)
|
||||
|
||||
optimizer = dict(
|
||||
constructor='LearningRateDecayOptimizerConstructor',
|
||||
_delete_=True,
|
||||
type='AdamW',
|
||||
lr=0.0001,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.05,
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg={
|
||||
'decay_rate': 0.9,
|
||||
'decay_type': 'stage_wise',
|
||||
'num_layers': 12
|
||||
})
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
@ -37,6 +41,7 @@ train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale='dynamic')
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='Fp16OptimizerHook', loss_scale='dynamic'))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -25,17 +25,21 @@ model = dict(
|
||||
)
|
||||
|
||||
optimizer = dict(
|
||||
constructor='LearningRateDecayOptimizerConstructor',
|
||||
_delete_=True,
|
||||
type='AdamW',
|
||||
lr=0.0001,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.05,
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg={
|
||||
'decay_rate': 0.9,
|
||||
'decay_type': 'stage_wise',
|
||||
'num_layers': 12
|
||||
})
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
@ -52,6 +56,7 @@ train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale='dynamic')
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='Fp16OptimizerHook', loss_scale='dynamic'))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -25,17 +25,21 @@ model = dict(
|
||||
)
|
||||
|
||||
optimizer = dict(
|
||||
constructor='LearningRateDecayOptimizerConstructor',
|
||||
_delete_=True,
|
||||
type='AdamW',
|
||||
lr=0.0001,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.05,
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg={
|
||||
'decay_rate': 0.9,
|
||||
'decay_type': 'stage_wise',
|
||||
'num_layers': 12
|
||||
})
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
@ -52,6 +56,7 @@ train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale='dynamic')
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='Fp16OptimizerHook', loss_scale='dynamic'))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -24,17 +24,21 @@ model = dict(
|
||||
)
|
||||
|
||||
optimizer = dict(
|
||||
constructor='LearningRateDecayOptimizerConstructor',
|
||||
_delete_=True,
|
||||
type='AdamW',
|
||||
lr=0.0001,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.05,
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg={
|
||||
'decay_rate': 0.9,
|
||||
'decay_type': 'stage_wise',
|
||||
'num_layers': 12
|
||||
})
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
@ -51,6 +55,7 @@ train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale='dynamic')
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='Fp16OptimizerHook', loss_scale='dynamic'))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -24,17 +24,21 @@ model = dict(
|
||||
)
|
||||
|
||||
optimizer = dict(
|
||||
constructor='LearningRateDecayOptimizerConstructor',
|
||||
_delete_=True,
|
||||
type='AdamW',
|
||||
lr=0.0001,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.05,
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg={
|
||||
'decay_rate': 0.9,
|
||||
'decay_type': 'stage_wise',
|
||||
'num_layers': 6
|
||||
})
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
@ -51,6 +55,7 @@ train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale='dynamic')
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='Fp16OptimizerHook', loss_scale='dynamic'))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -25,17 +25,21 @@ model = dict(
|
||||
)
|
||||
|
||||
optimizer = dict(
|
||||
constructor='LearningRateDecayOptimizerConstructor',
|
||||
_delete_=True,
|
||||
type='AdamW',
|
||||
lr=0.00008,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.05,
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg={
|
||||
'decay_rate': 0.9,
|
||||
'decay_type': 'stage_wise',
|
||||
'num_layers': 12
|
||||
})
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
@ -52,6 +56,7 @@ train_dataloader = dict(batch_size=2)
|
||||
val_dataloader = dict(batch_size=2)
|
||||
test_dataloader = val_dataloader
|
||||
# fp16 settings
|
||||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale='dynamic')
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='Fp16OptimizerHook', loss_scale='dynamic'))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -1,5 +1,5 @@
|
||||
_base_ = './deeplabv3_r101-d8_512x1024_80k_cityscapes.py'
|
||||
# fp16 settings
|
||||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512.)
|
||||
default_hooks = dict(optimizer=dict(type='Fp16OptimizerHook', loss_scale=512.))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -1,5 +1,5 @@
|
||||
_base_ = './deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py'
|
||||
# fp16 settings
|
||||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512.)
|
||||
default_hooks = dict(optimizer=dict(type='Fp16OptimizerHook', loss_scale=512.))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -10,7 +10,11 @@ optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=0.00006,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.01,
|
||||
weight_decay=0.01)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg=dict(
|
||||
custom_keys={
|
||||
'pos_embed': dict(decay_mult=0.),
|
||||
|
@ -1,5 +1,5 @@
|
||||
_base_ = './fcn_r101-d8_512x1024_80k_cityscapes.py'
|
||||
# fp16 settings
|
||||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512.)
|
||||
default_hooks = dict(optimizer=dict(type='Fp16OptimizerHook', loss_scale=512.))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -79,7 +79,12 @@ model = dict(
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0005)
|
||||
optimizer_config = dict(grad_clip=dict(max_norm=1, norm_type=2))
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(
|
||||
_delete_=True,
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
|
@ -79,7 +79,12 @@ model = dict(
|
||||
test_cfg=dict(mode='whole'))
|
||||
# optimizer
|
||||
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0005)
|
||||
optimizer_config = dict(grad_clip=dict(max_norm=1, norm_type=2))
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(
|
||||
_delete_=True,
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
|
@ -78,7 +78,12 @@ model = dict(
|
||||
test_cfg=dict(mode='whole'))
|
||||
# optimizer
|
||||
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0005)
|
||||
optimizer_config = dict(grad_clip=dict(max_norm=1, norm_type=2))
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(
|
||||
_delete_=True,
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
|
@ -79,7 +79,12 @@ model = dict(
|
||||
test_cfg=dict(mode='whole'))
|
||||
# optimizer
|
||||
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0005)
|
||||
optimizer_config = dict(grad_clip=dict(max_norm=1, norm_type=2))
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(
|
||||
_delete_=True,
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
|
@ -36,14 +36,23 @@ optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=0.00006,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.0005,
|
||||
weight_decay=0.0005)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg=dict(
|
||||
custom_keys={
|
||||
'absolute_pos_embed': dict(decay_mult=0.),
|
||||
'relative_position_bias_table': dict(decay_mult=0.),
|
||||
'norm': dict(decay_mult=0.)
|
||||
}))
|
||||
optimizer_config = dict(grad_clip=dict(max_norm=1, norm_type=2))
|
||||
|
||||
default_hooks = dict(
|
||||
optimizer=dict(
|
||||
_delete_=True,
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
|
@ -27,9 +27,13 @@ optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=1e-4,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.05,
|
||||
constructor='LayerDecayOptimizerConstructor',
|
||||
paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.65))
|
||||
weight_decay=0.05)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.65),
|
||||
constructor='LayerDecayOptimizerConstructor')
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
|
@ -3,5 +3,6 @@ _base_ = [
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||
]
|
||||
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
|
||||
optimizer = dict(lr=0.02)
|
||||
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
lr_config = dict(min_lr=2e-4)
|
||||
|
@ -3,5 +3,6 @@ _base_ = [
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
||||
]
|
||||
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
|
||||
optimizer = dict(lr=0.02)
|
||||
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
lr_config = dict(min_lr=2e-4)
|
||||
|
@ -1,5 +1,5 @@
|
||||
_base_ = './pspnet_r101-d8_512x1024_80k_cityscapes.py'
|
||||
# fp16 settings
|
||||
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale=512.)
|
||||
default_hooks = dict(optimizer=dict(type='Fp16OptimizerHook', loss_scale=512.))
|
||||
# fp16 placeholder
|
||||
fp16 = dict()
|
||||
|
@ -13,7 +13,12 @@ model = dict(
|
||||
strides=(1, 2, 2, 2)))
|
||||
|
||||
optimizer = dict(_delete_=True, type='AdamW', lr=0.0005, weight_decay=0.05)
|
||||
optimizer_config = dict(grad_clip=dict(max_norm=1, norm_type=2))
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(
|
||||
_delete_=True,
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
|
@ -11,7 +11,12 @@ model = dict(
|
||||
type='Pretrained', prefix='backbone.', checkpoint=checkpoint)))
|
||||
|
||||
optimizer = dict(_delete_=True, type='AdamW', lr=0.0005, weight_decay=0.05)
|
||||
optimizer_config = dict(grad_clip=dict(max_norm=1, norm_type=2))
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(
|
||||
_delete_=True,
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
|
@ -12,7 +12,11 @@ optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=0.00006,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.01,
|
||||
weight_decay=0.01)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg=dict(
|
||||
custom_keys={
|
||||
'pos_block': dict(decay_mult=0.),
|
||||
|
@ -15,14 +15,17 @@ optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=0.00006,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.01,
|
||||
weight_decay=0.01)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg=dict(
|
||||
custom_keys={
|
||||
'pos_block': dict(decay_mult=0.),
|
||||
'norm': dict(decay_mult=0.),
|
||||
'head': dict(lr_mult=10.)
|
||||
}))
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
|
@ -23,7 +23,11 @@ optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=0.00006,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.01,
|
||||
weight_decay=0.01)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg=dict(
|
||||
custom_keys={
|
||||
'absolute_pos_embed': dict(decay_mult=0.),
|
||||
|
@ -9,7 +9,11 @@ optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=0.00006,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.01,
|
||||
weight_decay=0.01)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg=dict(custom_keys={
|
||||
'pos_block': dict(decay_mult=0.),
|
||||
'norm': dict(decay_mult=0.)
|
||||
|
@ -24,7 +24,11 @@ optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=0.00006,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.01,
|
||||
weight_decay=0.01)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg=dict(custom_keys={
|
||||
'pos_block': dict(decay_mult=0.),
|
||||
'norm': dict(decay_mult=0.)
|
||||
|
@ -17,7 +17,11 @@ optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=0.00006,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.01,
|
||||
weight_decay=0.01)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg=dict(
|
||||
custom_keys={
|
||||
'pos_embed': dict(decay_mult=0.),
|
||||
|
@ -16,7 +16,11 @@ optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=0.00006,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.01,
|
||||
weight_decay=0.01)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg=dict(
|
||||
custom_keys={
|
||||
'pos_embed': dict(decay_mult=0.),
|
||||
|
@ -16,7 +16,11 @@ optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=0.00006,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.01,
|
||||
weight_decay=0.01)
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=optimizer,
|
||||
paramwise_cfg=dict(
|
||||
custom_keys={
|
||||
'pos_embed': dict(decay_mult=0.),
|
||||
|
Loading…
x
Reference in New Issue
Block a user