mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Feature] Support Segmenter (#955)
* segmenter: add model * update * readme: update * config: update * segmenter: update readme * segmenter: update * segmenter: update * segmenter: update * configs: set checkpoint path to pretrain folder * segmenter: modify vit-s/lin, remove data config * rreadme: update * configs: transfer from _base_ to segmenter * configs: add 8x1 suffix * configs: remove redundant lines * configs: cleanup * first attempt * swipe CI error * Update mmseg/models/decode_heads/__init__.py Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> * segmenter_linear: use fcn backbone * segmenter_mask: update * models: add segmenter vit * decoders: yapf+remove unused imports * apply precommit * segmenter/linear_head: fix * segmenter/linear_header: fix * segmenter: fix mask transformer * fix error * segmenter/mask_head: use trunc_normal init * refactor segmenter head * Fetch upstream (#1) * [Feature] Change options to cfg-option (#1129) * [Feature] Change option to cfg-option * add expire date and fix the docs * modify docstring * [Fix] Add <!-- [ABSTRACT] --> in metafile #1127 * [Fix] Fix correct num_classes of HRNet in LoveDA dataset #1136 * Bump to v0.20.1 (#1138) * bump version 0.20.1 * bump version 0.20.1 * [Fix] revise --option to --options #1140 Co-authored-by: Rockey <41846794+RockeyCoss@users.noreply.github.com> Co-authored-by: MengzhangLI <mcmong@pku.edu.cn> * decode_head: switch from linear to fcn * fix init list formatting * configs: remove variants, keep only vit-s on ade * align inference metric of vit-s-mask * configs: add vit t/b/l * Update mmseg/models/decode_heads/segmenter_mask_head.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * Update mmseg/models/decode_heads/segmenter_mask_head.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * Update mmseg/models/decode_heads/segmenter_mask_head.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * Update mmseg/models/decode_heads/segmenter_mask_head.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * Update mmseg/models/decode_heads/segmenter_mask_head.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * model_converters: use torch instead of einops * setup: remove einops * segmenter_mask: fix missing imports * add necessary imported init funtion * segmenter/seg-l: set resolution to 640 * segmenter/seg-l: fix test size * fix vitjax2mmseg * add README and unittest * fix unittest * add docstring * refactor config and add pretrained link * fix typo * add paper name in readme * change segmenter config names * fix typo in readme * fix typos in readme * fix segmenter typo * fix segmenter typo * delete redundant comma in config files * delete redundant comma in config files * fix convert script * update lateset master version Co-authored-by: MengzhangLI <mcmong@pku.edu.cn> Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> Co-authored-by: Rockey <41846794+RockeyCoss@users.noreply.github.com> Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com>
This commit is contained in:
parent
80a48c840e
commit
cb1bf9f372
@ -118,6 +118,7 @@ Supported methods:
|
||||
- [x] [STDC (CVPR'2021)](configs/stdc)
|
||||
- [x] [SETR (CVPR'2021)](configs/setr)
|
||||
- [x] [DPT (ArXiv'2021)](configs/dpt)
|
||||
- [x] [Segmenter (ICCV'2021)](configs/segmenter)
|
||||
- [x] [SegFormer (NeurIPS'2021)](configs/segformer)
|
||||
|
||||
Supported datasets:
|
||||
|
@ -117,6 +117,7 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
|
||||
- [x] [STDC (CVPR'2021)](configs/stdc)
|
||||
- [x] [SETR (CVPR'2021)](configs/setr)
|
||||
- [x] [DPT (ArXiv'2021)](configs/dpt)
|
||||
- [x] [Segmenter (ICCV'2021)](configs/segmenter)
|
||||
- [x] [SegFormer (NeurIPS'2021)](configs/segformer)
|
||||
|
||||
已支持的数据集:
|
||||
|
35
configs/_base_/models/segmenter_vit-b16_mask.py
Normal file
35
configs/_base_/models/segmenter_vit-b16_mask.py
Normal file
@ -0,0 +1,35 @@
|
||||
# model settings
|
||||
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained='pretrain/vit_base_p16_384.pth',
|
||||
backbone=dict(
|
||||
type='VisionTransformer',
|
||||
img_size=(512, 512),
|
||||
patch_size=16,
|
||||
in_channels=3,
|
||||
embed_dims=768,
|
||||
num_layers=12,
|
||||
num_heads=12,
|
||||
drop_path_rate=0.1,
|
||||
attn_drop_rate=0.0,
|
||||
drop_rate=0.0,
|
||||
final_norm=True,
|
||||
norm_cfg=backbone_norm_cfg,
|
||||
with_cls_token=True,
|
||||
interpolate_mode='bicubic',
|
||||
),
|
||||
decode_head=dict(
|
||||
type='SegmenterMaskTransformerHead',
|
||||
in_channels=768,
|
||||
channels=768,
|
||||
num_classes=150,
|
||||
num_layers=2,
|
||||
num_heads=12,
|
||||
embed_dims=768,
|
||||
dropout_ratio=0.0,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
||||
),
|
||||
test_cfg=dict(mode='slide', crop_size=(512, 512), stride=(480, 480)),
|
||||
)
|
73
configs/segmenter/README.md
Normal file
73
configs/segmenter/README.md
Normal file
@ -0,0 +1,73 @@
|
||||
# Segmenter
|
||||
|
||||
[Segmenter: Transformer for Semantic Segmentation](https://arxiv.org/abs/2105.05633)
|
||||
|
||||
## Introduction
|
||||
|
||||
<!-- [ALGORITHM] -->
|
||||
|
||||
<a href="https://github.com/rstrudel/segmenter">Official Repo</a>
|
||||
|
||||
<a href="https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15">Code Snippet</a>
|
||||
|
||||
## Abstract
|
||||
|
||||
<!-- [ABSTRACT] -->
|
||||
|
||||
Image segmentation is often ambiguous at the level of individual image patches and requires contextual information to reach label consensus. In this paper we introduce Segmenter, a transformer model for semantic segmentation. In contrast to convolution-based methods, our approach allows to model global context already at the first layer and throughout the network. We build on the recent Vision Transformer (ViT) and extend it to semantic segmentation. To do so, we rely on the output embeddings corresponding to image patches and obtain class labels from these embeddings with a point-wise linear decoder or a mask transformer decoder. We leverage models pre-trained for image classification and show that we can fine-tune them on moderate sized datasets available for semantic segmentation. The linear decoder allows to obtain excellent results already, but the performance can be further improved by a mask transformer generating class masks. We conduct an extensive ablation study to show the impact of the different parameters, in particular the performance is better for large models and small patch sizes. Segmenter attains excellent results for semantic segmentation. It outperforms the state of the art on both ADE20K and Pascal Context datasets and is competitive on Cityscapes.
|
||||
|
||||
<!-- [IMAGE] -->
|
||||
<div align=center>
|
||||
<img src="https://user-images.githubusercontent.com/24582831/148507554-87eb80bd-02c7-4c31-b102-c6141e231ec8.png" width="70%"/>
|
||||
</div>
|
||||
|
||||
```bibtex
|
||||
@article{strudel2021Segmenter,
|
||||
title={Segmenter: Transformer for Semantic Segmentation},
|
||||
author={Strudel, Robin and Ricardo, Garcia, and Laptev, Ivan and Schmid, Cordelia},
|
||||
journal={arXiv preprint arXiv:2105.05633},
|
||||
year={2021}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
To use the pre-trained ViT model from [Segmenter](https://github.com/rstrudel/segmenter), it is necessary to convert keys.
|
||||
|
||||
We provide a script [`vitjax2mmseg.py`](../../tools/model_converters/vitjax2mmseg.py) in the tools directory to convert the key of models from [ViT-AugReg](https://github.com/rwightman/pytorch-image-models/blob/f55c22bebf9d8afc449d317a723231ef72e0d662/timm/models/vision_transformer.py#L54-L106) to MMSegmentation style.
|
||||
|
||||
```shell
|
||||
python tools/model_converters/vitjax2mmseg.py ${PRETRAIN_PATH} ${STORE_PATH}
|
||||
```
|
||||
|
||||
E.g.
|
||||
|
||||
```shell
|
||||
python tools/model_converters/vitjax2mmseg.py \
|
||||
Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz \
|
||||
pretrain/vit_tiny_p16_384.pth
|
||||
```
|
||||
|
||||
This script convert model from `PRETRAIN_PATH` and store the converted model in `STORE_PATH`.
|
||||
|
||||
In our default setting, pretrained models and their corresponding [ViT-AugReg](https://github.com/rwightman/pytorch-image-models/blob/f55c22bebf9d8afc449d317a723231ef72e0d662/timm/models/vision_transformer.py#L54-L106) models could be defined below:
|
||||
|
||||
| pretrained models | original models |
|
||||
| ------ | -------- |
|
||||
|vit_tiny_p16_384.pth | ['vit_tiny_patch16_384'](https://storage.googleapis.com/vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz) |
|
||||
|vit_small_p16_384.pth | ['vit_small_patch16_384'](https://storage.googleapis.com/vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.03-res_384.npz) |
|
||||
|vit_base_p16_384.pth | ['vit_base_patch16_384'](https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_384.npz) |
|
||||
|vit_large_p16_384.pth | ['vit_large_patch16_384'](https://storage.googleapis.com/vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.1-sd_0.1--imagenet2012-steps_20k-lr_0.01-res_384.npz) |
|
||||
|
||||
## Results and models
|
||||
|
||||
### ADE20K
|
||||
|
||||
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
|
||||
| ------ | -------- | --------- | ---------- | ------- | -------- | --- | --- | -------------- | ----- |
|
||||
| Segmenter-Mask | ViT-T_16 | 512x512 | 160000 | 1.21 | 27.98 | 39.99 | 40.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706-ffcf7509.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) |
|
||||
| Segmenter-Linear | ViT-S_16 | 512x512 | 160000 | 1.78 | 28.07 | 45.75 | 46.82 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713-39658c46.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713.log.json) |
|
||||
| Segmenter-Mask | ViT-S_16 | 512x512 | 160000 | 2.03 | 24.80 | 46.19 | 47.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706-511bb103.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) |
|
||||
| Segmenter-Mask | ViT-B_16 |512x512 | 160000 | 4.20 | 13.20 | 49.60 | 51.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json) |
|
||||
| Segmenter-Mask | ViT-L_16 |640x640 | 160000 | 16.56 | 2.62 | 52.16 | 53.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750-7ef345be.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750.log.json) |
|
125
configs/segmenter/segmenter.yml
Normal file
125
configs/segmenter/segmenter.yml
Normal file
@ -0,0 +1,125 @@
|
||||
Collections:
|
||||
- Name: segmenter
|
||||
Metadata:
|
||||
Training Data:
|
||||
- ADE20K
|
||||
Paper:
|
||||
URL: https://arxiv.org/abs/2105.05633
|
||||
Title: 'Segmenter: Transformer for Semantic Segmentation'
|
||||
README: configs/segmenter/README.md
|
||||
Code:
|
||||
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
|
||||
Version: v0.21.0
|
||||
Converted From:
|
||||
Code: https://github.com/rstrudel/segmenter
|
||||
Models:
|
||||
- Name: segmenter_vit-t_mask_8x1_512x512_160k_ade20k
|
||||
In Collection: segmenter
|
||||
Metadata:
|
||||
backbone: ViT-T_16
|
||||
crop size: (512,512)
|
||||
lr schd: 160000
|
||||
inference time (ms/im):
|
||||
- value: 35.74
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
Training Memory (GB): 1.21
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Metrics:
|
||||
mIoU: 39.99
|
||||
mIoU(ms+flip): 40.83
|
||||
Config: configs/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706-ffcf7509.pth
|
||||
- Name: segmenter_vit-s_linear_8x1_512x512_160k_ade20k
|
||||
In Collection: segmenter
|
||||
Metadata:
|
||||
backbone: ViT-S_16
|
||||
crop size: (512,512)
|
||||
lr schd: 160000
|
||||
inference time (ms/im):
|
||||
- value: 35.63
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
Training Memory (GB): 1.78
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Metrics:
|
||||
mIoU: 45.75
|
||||
mIoU(ms+flip): 46.82
|
||||
Config: configs/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713-39658c46.pth
|
||||
- Name: segmenter_vit-s_mask_8x1_512x512_160k_ade20k
|
||||
In Collection: segmenter
|
||||
Metadata:
|
||||
backbone: ViT-S_16
|
||||
crop size: (512,512)
|
||||
lr schd: 160000
|
||||
inference time (ms/im):
|
||||
- value: 40.32
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
Training Memory (GB): 2.03
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Metrics:
|
||||
mIoU: 46.19
|
||||
mIoU(ms+flip): 47.85
|
||||
Config: configs/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706-511bb103.pth
|
||||
- Name: segmenter_vit-b_mask_8x1_512x512_160k_ade20k
|
||||
In Collection: segmenter
|
||||
Metadata:
|
||||
backbone: ViT-B_16
|
||||
crop size: (512,512)
|
||||
lr schd: 160000
|
||||
inference time (ms/im):
|
||||
- value: 75.76
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (512,512)
|
||||
Training Memory (GB): 4.2
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Metrics:
|
||||
mIoU: 49.6
|
||||
mIoU(ms+flip): 51.07
|
||||
Config: configs/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth
|
||||
- Name: segmenter_vit-l_mask_8x1_512x512_160k_ade20k
|
||||
In Collection: segmenter
|
||||
Metadata:
|
||||
backbone: ViT-L_16
|
||||
crop size: (640,640)
|
||||
lr schd: 160000
|
||||
inference time (ms/im):
|
||||
- value: 381.68
|
||||
hardware: V100
|
||||
backend: PyTorch
|
||||
batch size: 1
|
||||
mode: FP32
|
||||
resolution: (640,640)
|
||||
Training Memory (GB): 16.56
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Metrics:
|
||||
mIoU: 52.16
|
||||
mIoU(ms+flip): 53.65
|
||||
Config: configs/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k.py
|
||||
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750-7ef345be.pth
|
@ -0,0 +1,43 @@
|
||||
_base_ = [
|
||||
'../_base_/models/segmenter_vit-b16_mask.py',
|
||||
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py',
|
||||
'../_base_/schedules/schedule_160k.py'
|
||||
]
|
||||
optimizer = dict(lr=0.001, weight_decay=0.0)
|
||||
|
||||
img_norm_cfg = dict(
|
||||
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)
|
||||
crop_size = (512, 512)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations', reduce_zero_label=True),
|
||||
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||
dict(type='RandomFlip', prob=0.5),
|
||||
dict(type='PhotoMetricDistortion'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(2048, 512),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img'])
|
||||
])
|
||||
]
|
||||
data = dict(
|
||||
# num_gpus: 8 -> batch_size: 8
|
||||
samples_per_gpu=1,
|
||||
train=dict(pipeline=train_pipeline),
|
||||
val=dict(pipeline=test_pipeline),
|
||||
test=dict(pipeline=test_pipeline))
|
@ -0,0 +1,60 @@
|
||||
_base_ = [
|
||||
'../_base_/models/segmenter_vit-b16_mask.py',
|
||||
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py',
|
||||
'../_base_/schedules/schedule_160k.py'
|
||||
]
|
||||
|
||||
model = dict(
|
||||
pretrained='pretrain/vit_large_p16_384.pth',
|
||||
backbone=dict(
|
||||
type='VisionTransformer',
|
||||
img_size=(640, 640),
|
||||
embed_dims=1024,
|
||||
num_layers=24,
|
||||
num_heads=16),
|
||||
decode_head=dict(
|
||||
type='SegmenterMaskTransformerHead',
|
||||
in_channels=1024,
|
||||
channels=1024,
|
||||
num_heads=16,
|
||||
embed_dims=1024),
|
||||
test_cfg=dict(mode='slide', crop_size=(640, 640), stride=(608, 608)))
|
||||
|
||||
optimizer = dict(lr=0.001, weight_decay=0.0)
|
||||
|
||||
img_norm_cfg = dict(
|
||||
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)
|
||||
crop_size = (640, 640)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations', reduce_zero_label=True),
|
||||
dict(type='Resize', img_scale=(2048, 640), ratio_range=(0.5, 2.0)),
|
||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||
dict(type='RandomFlip', prob=0.5),
|
||||
dict(type='PhotoMetricDistortion'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(2048, 640),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img'])
|
||||
])
|
||||
]
|
||||
data = dict(
|
||||
# num_gpus: 8 -> batch_size: 8
|
||||
samples_per_gpu=1,
|
||||
train=dict(pipeline=train_pipeline),
|
||||
val=dict(pipeline=test_pipeline),
|
||||
test=dict(pipeline=test_pipeline))
|
@ -0,0 +1,14 @@
|
||||
_base_ = './segmenter_vit-s_mask_8x1_512x512_160k_ade20k.py'
|
||||
|
||||
model = dict(
|
||||
decode_head=dict(
|
||||
_delete_=True,
|
||||
type='FCNHead',
|
||||
in_channels=384,
|
||||
channels=384,
|
||||
num_convs=0,
|
||||
dropout_ratio=0.0,
|
||||
concat_input=False,
|
||||
num_classes=150,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)))
|
@ -0,0 +1,64 @@
|
||||
_base_ = [
|
||||
'../_base_/models/segmenter_vit-b16_mask.py',
|
||||
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py',
|
||||
'../_base_/schedules/schedule_160k.py'
|
||||
]
|
||||
|
||||
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
|
||||
model = dict(
|
||||
pretrained='pretrain/vit_small_p16_384.pth',
|
||||
backbone=dict(
|
||||
img_size=(512, 512),
|
||||
embed_dims=384,
|
||||
num_heads=6,
|
||||
),
|
||||
decode_head=dict(
|
||||
type='SegmenterMaskTransformerHead',
|
||||
in_channels=384,
|
||||
channels=384,
|
||||
num_classes=150,
|
||||
num_layers=2,
|
||||
num_heads=6,
|
||||
embed_dims=384,
|
||||
dropout_ratio=0.0,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)))
|
||||
|
||||
optimizer = dict(lr=0.001, weight_decay=0.0)
|
||||
|
||||
img_norm_cfg = dict(
|
||||
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)
|
||||
crop_size = (512, 512)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations', reduce_zero_label=True),
|
||||
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||
dict(type='RandomFlip', prob=0.5),
|
||||
dict(type='PhotoMetricDistortion'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(2048, 512),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img'])
|
||||
])
|
||||
]
|
||||
data = dict(
|
||||
# num_gpus: 8 -> batch_size: 8
|
||||
samples_per_gpu=1,
|
||||
train=dict(pipeline=train_pipeline),
|
||||
val=dict(pipeline=test_pipeline),
|
||||
test=dict(pipeline=test_pipeline))
|
@ -0,0 +1,54 @@
|
||||
_base_ = [
|
||||
'../_base_/models/segmenter_vit-b16_mask.py',
|
||||
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py',
|
||||
'../_base_/schedules/schedule_160k.py'
|
||||
]
|
||||
|
||||
model = dict(
|
||||
pretrained='pretrain/vit_tiny_p16_384.pth',
|
||||
backbone=dict(embed_dims=192, num_heads=3),
|
||||
decode_head=dict(
|
||||
type='SegmenterMaskTransformerHead',
|
||||
in_channels=192,
|
||||
channels=192,
|
||||
num_heads=3,
|
||||
embed_dims=192))
|
||||
|
||||
optimizer = dict(lr=0.001, weight_decay=0.0)
|
||||
|
||||
img_norm_cfg = dict(
|
||||
mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], to_rgb=True)
|
||||
crop_size = (512, 512)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations', reduce_zero_label=True),
|
||||
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||
dict(type='RandomFlip', prob=0.5),
|
||||
dict(type='PhotoMetricDistortion'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(2048, 512),
|
||||
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='RandomFlip'),
|
||||
dict(type='Normalize', **img_norm_cfg),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img'])
|
||||
])
|
||||
]
|
||||
data = dict(
|
||||
# num_gpus: 8 -> batch_size: 8
|
||||
samples_per_gpu=1,
|
||||
train=dict(pipeline=train_pipeline),
|
||||
val=dict(pipeline=test_pipeline),
|
||||
test=dict(pipeline=test_pipeline))
|
@ -1,5 +1,6 @@
|
||||
## Changelog
|
||||
|
||||
|
||||
### V0.20.2 (12/15/2021)
|
||||
|
||||
**Bug Fixes**
|
||||
|
@ -20,6 +20,7 @@ from .point_head import PointHead
|
||||
from .psa_head import PSAHead
|
||||
from .psp_head import PSPHead
|
||||
from .segformer_head import SegformerHead
|
||||
from .segmenter_mask_head import SegmenterMaskTransformerHead
|
||||
from .sep_aspp_head import DepthwiseSeparableASPPHead
|
||||
from .sep_fcn_head import DepthwiseSeparableFCNHead
|
||||
from .setr_mla_head import SETRMLAHead
|
||||
@ -32,6 +33,6 @@ __all__ = [
|
||||
'UPerHead', 'DepthwiseSeparableASPPHead', 'ANNHead', 'DAHead', 'OCRHead',
|
||||
'EncHead', 'DepthwiseSeparableFCNHead', 'FPNHead', 'EMAHead', 'DNLHead',
|
||||
'PointHead', 'APCHead', 'DMHead', 'LRASPPHead', 'SETRUPHead',
|
||||
'SETRMLAHead', 'DPTHead', 'SETRMLAHead', 'SegformerHead', 'ISAHead',
|
||||
'STDCHead'
|
||||
'SETRMLAHead', 'DPTHead', 'SETRMLAHead', 'SegmenterMaskTransformerHead',
|
||||
'SegformerHead', 'ISAHead', 'STDCHead'
|
||||
]
|
||||
|
133
mmseg/models/decode_heads/segmenter_mask_head.py
Normal file
133
mmseg/models/decode_heads/segmenter_mask_head.py
Normal file
@ -0,0 +1,133 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from mmcv.cnn import build_norm_layer
|
||||
from mmcv.cnn.utils.weight_init import (constant_init, trunc_normal_,
|
||||
trunc_normal_init)
|
||||
from mmcv.runner import ModuleList
|
||||
|
||||
from mmseg.models.backbones.vit import TransformerEncoderLayer
|
||||
from ..builder import HEADS
|
||||
from .decode_head import BaseDecodeHead
|
||||
|
||||
|
||||
@HEADS.register_module()
|
||||
class SegmenterMaskTransformerHead(BaseDecodeHead):
|
||||
"""Segmenter: Transformer for Semantic Segmentation.
|
||||
|
||||
This head is the implementation of
|
||||
`Segmenter: <https://arxiv.org/abs/2105.05633>`_.
|
||||
|
||||
Args:
|
||||
backbone_cfg:(dict): Config of backbone of
|
||||
Context Path.
|
||||
in_channels (int): The number of channels of input image.
|
||||
num_layers (int): The depth of transformer.
|
||||
num_heads (int): The number of attention heads.
|
||||
embed_dims (int): The number of embedding dimension.
|
||||
mlp_ratio (int): ratio of mlp hidden dim to embedding dim.
|
||||
Default: 4.
|
||||
drop_path_rate (float): stochastic depth rate. Default 0.1.
|
||||
drop_rate (float): Probability of an element to be zeroed.
|
||||
Default 0.0
|
||||
attn_drop_rate (float): The drop out rate for attention layer.
|
||||
Default 0.0
|
||||
num_fcs (int): The number of fully-connected layers for FFNs.
|
||||
Default: 2.
|
||||
qkv_bias (bool): Enable bias for qkv if True. Default: True.
|
||||
act_cfg (dict): The activation config for FFNs.
|
||||
Default: dict(type='GELU').
|
||||
norm_cfg (dict): Config dict for normalization layer.
|
||||
Default: dict(type='LN')
|
||||
init_std (float): The value of std in weight initialization.
|
||||
Default: 0.02.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
num_layers,
|
||||
num_heads,
|
||||
embed_dims,
|
||||
mlp_ratio=4,
|
||||
drop_path_rate=0.1,
|
||||
drop_rate=0.0,
|
||||
attn_drop_rate=0.0,
|
||||
num_fcs=2,
|
||||
qkv_bias=True,
|
||||
act_cfg=dict(type='GELU'),
|
||||
norm_cfg=dict(type='LN'),
|
||||
init_std=0.02,
|
||||
**kwargs,
|
||||
):
|
||||
super(SegmenterMaskTransformerHead, self).__init__(
|
||||
in_channels=in_channels, **kwargs)
|
||||
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, num_layers)]
|
||||
self.layers = ModuleList()
|
||||
for i in range(num_layers):
|
||||
self.layers.append(
|
||||
TransformerEncoderLayer(
|
||||
embed_dims=embed_dims,
|
||||
num_heads=num_heads,
|
||||
feedforward_channels=mlp_ratio * embed_dims,
|
||||
attn_drop_rate=attn_drop_rate,
|
||||
drop_rate=drop_rate,
|
||||
drop_path_rate=dpr[i],
|
||||
num_fcs=num_fcs,
|
||||
qkv_bias=qkv_bias,
|
||||
act_cfg=act_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
batch_first=True,
|
||||
))
|
||||
|
||||
self.dec_proj = nn.Linear(in_channels, embed_dims)
|
||||
|
||||
self.cls_emb = nn.Parameter(
|
||||
torch.randn(1, self.num_classes, embed_dims))
|
||||
self.patch_proj = nn.Linear(embed_dims, embed_dims, bias=False)
|
||||
self.classes_proj = nn.Linear(embed_dims, embed_dims, bias=False)
|
||||
|
||||
self.decoder_norm = build_norm_layer(
|
||||
norm_cfg, embed_dims, postfix=1)[1]
|
||||
self.mask_norm = build_norm_layer(
|
||||
norm_cfg, self.num_classes, postfix=2)[1]
|
||||
|
||||
self.init_std = init_std
|
||||
|
||||
delattr(self, 'conv_seg')
|
||||
|
||||
def init_weights(self):
|
||||
trunc_normal_(self.cls_emb, std=self.init_std)
|
||||
trunc_normal_init(self.patch_proj, std=self.init_std)
|
||||
trunc_normal_init(self.classes_proj, std=self.init_std)
|
||||
for n, m in self.named_modules():
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_init(m, std=self.init_std, bias=0)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
constant_init(m, val=1.0, bias=0.0)
|
||||
|
||||
def forward(self, inputs):
|
||||
x = self._transform_inputs(inputs)
|
||||
b, c, h, w = x.shape
|
||||
x = x.permute(0, 2, 3, 1).contiguous().view(b, -1, c)
|
||||
|
||||
x = self.dec_proj(x)
|
||||
cls_emb = self.cls_emb.expand(x.size(0), -1, -1)
|
||||
x = torch.cat((x, cls_emb), 1)
|
||||
for layer in self.layers:
|
||||
x = layer(x)
|
||||
x = self.decoder_norm(x)
|
||||
|
||||
patches = self.patch_proj(x[:, :-self.num_classes])
|
||||
cls_seg_feat = self.classes_proj(x[:, -self.num_classes:])
|
||||
|
||||
patches = F.normalize(patches, dim=2, p=2)
|
||||
cls_seg_feat = F.normalize(cls_seg_feat, dim=2, p=2)
|
||||
|
||||
masks = patches @ cls_seg_feat.transpose(1, 2)
|
||||
masks = self.mask_norm(masks)
|
||||
masks = masks.permute(0, 2, 1).contiguous().view(b, -1, h, w)
|
||||
|
||||
return masks
|
@ -30,6 +30,7 @@ Import:
|
||||
- configs/pspnet/pspnet.yml
|
||||
- configs/resnest/resnest.yml
|
||||
- configs/segformer/segformer.yml
|
||||
- configs/segmenter/segmenter.yml
|
||||
- configs/sem_fpn/sem_fpn.yml
|
||||
- configs/setr/setr.yml
|
||||
- configs/stdc/stdc.yml
|
||||
|
24
tests/test_models/test_heads/test_segmenter_mask_head.py
Normal file
24
tests/test_models/test_heads/test_segmenter_mask_head.py
Normal file
@ -0,0 +1,24 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import torch
|
||||
|
||||
from mmseg.models.decode_heads import SegmenterMaskTransformerHead
|
||||
from .utils import _conv_has_norm, to_cuda
|
||||
|
||||
|
||||
def test_segmenter_mask_transformer_head():
|
||||
head = SegmenterMaskTransformerHead(
|
||||
in_channels=2,
|
||||
channels=2,
|
||||
num_classes=150,
|
||||
num_layers=2,
|
||||
num_heads=3,
|
||||
embed_dims=192,
|
||||
dropout_ratio=0.0)
|
||||
assert _conv_has_norm(head, sync_bn=True)
|
||||
head.init_weights()
|
||||
|
||||
inputs = [torch.randn(1, 2, 32, 32)]
|
||||
if torch.cuda.is_available():
|
||||
head, inputs = to_cuda(head, inputs)
|
||||
outputs = head(inputs)
|
||||
assert outputs.shape == (1, head.num_classes, 32, 32)
|
122
tools/model_converters/vitjax2mmseg.py
Normal file
122
tools/model_converters/vitjax2mmseg.py
Normal file
@ -0,0 +1,122 @@
|
||||
import argparse
|
||||
import os.path as osp
|
||||
|
||||
import mmcv
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
def vit_jax_to_torch(jax_weights, num_layer=12):
|
||||
torch_weights = dict()
|
||||
|
||||
# patch embedding
|
||||
conv_filters = jax_weights['embedding/kernel']
|
||||
conv_filters = conv_filters.permute(3, 2, 0, 1)
|
||||
torch_weights['patch_embed.projection.weight'] = conv_filters
|
||||
torch_weights['patch_embed.projection.bias'] = jax_weights[
|
||||
'embedding/bias']
|
||||
|
||||
# pos embedding
|
||||
torch_weights['pos_embed'] = jax_weights[
|
||||
'Transformer/posembed_input/pos_embedding']
|
||||
|
||||
# cls token
|
||||
torch_weights['cls_token'] = jax_weights['cls']
|
||||
|
||||
# head
|
||||
torch_weights['ln1.weight'] = jax_weights['Transformer/encoder_norm/scale']
|
||||
torch_weights['ln1.bias'] = jax_weights['Transformer/encoder_norm/bias']
|
||||
|
||||
# transformer blocks
|
||||
for i in range(num_layer):
|
||||
jax_block = f'Transformer/encoderblock_{i}'
|
||||
torch_block = f'layers.{i}'
|
||||
|
||||
# attention norm
|
||||
torch_weights[f'{torch_block}.ln1.weight'] = jax_weights[
|
||||
f'{jax_block}/LayerNorm_0/scale']
|
||||
torch_weights[f'{torch_block}.ln1.bias'] = jax_weights[
|
||||
f'{jax_block}/LayerNorm_0/bias']
|
||||
|
||||
# attention
|
||||
query_weight = jax_weights[
|
||||
f'{jax_block}/MultiHeadDotProductAttention_1/query/kernel']
|
||||
query_bias = jax_weights[
|
||||
f'{jax_block}/MultiHeadDotProductAttention_1/query/bias']
|
||||
key_weight = jax_weights[
|
||||
f'{jax_block}/MultiHeadDotProductAttention_1/key/kernel']
|
||||
key_bias = jax_weights[
|
||||
f'{jax_block}/MultiHeadDotProductAttention_1/key/bias']
|
||||
value_weight = jax_weights[
|
||||
f'{jax_block}/MultiHeadDotProductAttention_1/value/kernel']
|
||||
value_bias = jax_weights[
|
||||
f'{jax_block}/MultiHeadDotProductAttention_1/value/bias']
|
||||
|
||||
qkv_weight = torch.from_numpy(
|
||||
np.stack((query_weight, key_weight, value_weight), 1))
|
||||
qkv_weight = torch.flatten(qkv_weight, start_dim=1)
|
||||
qkv_bias = torch.from_numpy(
|
||||
np.stack((query_bias, key_bias, value_bias), 0))
|
||||
qkv_bias = torch.flatten(qkv_bias, start_dim=0)
|
||||
|
||||
torch_weights[f'{torch_block}.attn.attn.in_proj_weight'] = qkv_weight
|
||||
torch_weights[f'{torch_block}.attn.attn.in_proj_bias'] = qkv_bias
|
||||
to_out_weight = jax_weights[
|
||||
f'{jax_block}/MultiHeadDotProductAttention_1/out/kernel']
|
||||
to_out_weight = torch.flatten(to_out_weight, start_dim=0, end_dim=1)
|
||||
torch_weights[
|
||||
f'{torch_block}.attn.attn.out_proj.weight'] = to_out_weight
|
||||
torch_weights[f'{torch_block}.attn.attn.out_proj.bias'] = jax_weights[
|
||||
f'{jax_block}/MultiHeadDotProductAttention_1/out/bias']
|
||||
|
||||
# mlp norm
|
||||
torch_weights[f'{torch_block}.ln2.weight'] = jax_weights[
|
||||
f'{jax_block}/LayerNorm_2/scale']
|
||||
torch_weights[f'{torch_block}.ln2.bias'] = jax_weights[
|
||||
f'{jax_block}/LayerNorm_2/bias']
|
||||
|
||||
# mlp
|
||||
torch_weights[f'{torch_block}.ffn.layers.0.0.weight'] = jax_weights[
|
||||
f'{jax_block}/MlpBlock_3/Dense_0/kernel']
|
||||
torch_weights[f'{torch_block}.ffn.layers.0.0.bias'] = jax_weights[
|
||||
f'{jax_block}/MlpBlock_3/Dense_0/bias']
|
||||
torch_weights[f'{torch_block}.ffn.layers.1.weight'] = jax_weights[
|
||||
f'{jax_block}/MlpBlock_3/Dense_1/kernel']
|
||||
torch_weights[f'{torch_block}.ffn.layers.1.bias'] = jax_weights[
|
||||
f'{jax_block}/MlpBlock_3/Dense_1/bias']
|
||||
|
||||
# transpose weights
|
||||
for k, v in torch_weights.items():
|
||||
if 'weight' in k and 'patch_embed' not in k and 'ln' not in k:
|
||||
v = v.permute(1, 0)
|
||||
torch_weights[k] = v
|
||||
|
||||
return torch_weights
|
||||
|
||||
|
||||
def main():
|
||||
# stole refactoring code from Robin Strudel, thanks
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Convert keys from jax official pretrained vit models to '
|
||||
'MMSegmentation style.')
|
||||
parser.add_argument('src', help='src model path or url')
|
||||
# The dst path must be a full path of the new checkpoint.
|
||||
parser.add_argument('dst', help='save path')
|
||||
args = parser.parse_args()
|
||||
|
||||
jax_weights = np.load(args.src)
|
||||
jax_weights_tensor = {}
|
||||
for key in jax_weights.files:
|
||||
value = torch.from_numpy(jax_weights[key])
|
||||
jax_weights_tensor[key] = value
|
||||
if 'L_16-i21k' in args.src:
|
||||
num_layer = 24
|
||||
else:
|
||||
num_layer = 12
|
||||
torch_weights = vit_jax_to_torch(jax_weights_tensor, num_layer)
|
||||
mmcv.mkdir_or_exist(osp.dirname(args.dst))
|
||||
torch.save(torch_weights, args.dst)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user